Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,783 Bytes
5f093a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuid4
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
logger = get_logger(__name__)
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
SESSION_ID = uuid4().hex
HF_HUB_OFFLINE = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
HUGGINGFACE_CO_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/"
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
"""
Formats a user-agent string with basic info about a request.
"""
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f"; torch/{_torch_version}"
if is_flax_available():
ua += f"; jax/{_jax_version}"
ua += f"; flax/{_flax_version}"
if is_onnx_available():
ua += f"; onnxruntime/{_onnxruntime_version}"
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(user_agent, dict):
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
return ua
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def create_model_card(args, model_name):
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`."
)
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
return
hub_token = args.hub_token if hasattr(args, "hub_token") else None
repo_name = get_full_repo_name(model_name, token=hub_token)
model_card = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en",
license="apache-2.0",
library_name="diffusers",
tags=[],
datasets=args.dataset_name,
metrics=[],
),
template_path=MODEL_CARD_TEMPLATE_PATH,
model_name=model_name,
repo_name=repo_name,
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None,
learning_rate=args.learning_rate,
train_batch_size=args.train_batch_size,
eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(args, "gradient_accumulation_steps") else None
),
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None,
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None,
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None,
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None,
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None,
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None,
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None,
ema_power=args.ema_power if hasattr(args, "ema_power") else None,
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None,
mixed_precision=args.mixed_precision,
)
card_path = os.path.join(args.output_dir, "README.md")
model_card.save(card_path)
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
"""
Extracts the commit hash from a resolved filename toward a cache file.
"""
if resolved_file is None or commit_hash is not None:
return commit_hash
resolved_file = str(Path(resolved_file).as_posix())
search = re.search(r"snapshots/([^/]+)/", resolved_file)
if search is None:
return None
commit_hash = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
hf_cache_home = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers")
def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None:
if new_cache_dir is None:
new_cache_dir = DIFFUSERS_CACHE
if old_cache_dir is None:
old_cache_dir = old_diffusers_cache
old_cache_dir = Path(old_cache_dir).expanduser()
new_cache_dir = Path(new_cache_dir).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*"):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir)
new_blob_path.parent.mkdir(parents=True, exist_ok=True)
os.replace(old_blob_path, new_blob_path)
try:
os.symlink(new_blob_path, old_blob_path)
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded."
)
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
cache_version_file = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
if not os.path.isfile(cache_version_file):
cache_version = 0
else:
with open(cache_version_file) as f:
try:
cache_version = int(f.read())
except ValueError:
cache_version = 0
if cache_version < 1:
old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
"existing cached models. This is a one-time operation, you can interrupt it or run it "
"later by calling `diffusers.utils.hub_utils.move_cache()`."
)
try:
move_cache()
except Exception as e:
trace = "\n".join(traceback.format_tb(e.__traceback__))
logger.error(
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
"message and we will do our best to help."
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, "w") as f:
f.write("1")
except Exception:
logger.warning(
f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure "
"the directory exists and can be written to."
)
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
if variant is not None:
splits = weights_name.split(".")
splits = splits[:-1] + [variant] + splits[-1:]
weights_name = ".".join(splits)
return weights_name
def _get_model_file(
pretrained_model_name_or_path,
*,
weights_name,
subfolder,
cache_dir,
force_download,
proxies,
resume_download,
local_files_only,
use_auth_token,
user_agent,
revision,
commit_hash=None,
):
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isfile(pretrained_model_name_or_path):
return pretrained_model_name_or_path
elif os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
# Load from a PyTorch checkpoint
model_file = os.path.join(pretrained_model_name_or_path, weights_name)
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
):
model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
return model_file
else:
raise EnvironmentError(
f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
)
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(__version__).base_version) >= version.parse("0.20.0")
):
try:
model_file = hf_hub_download(
pretrained_model_name_or_path,
filename=_add_variant(weights_name, revision),
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
subfolder=subfolder,
revision=revision or commit_hash,
)
warnings.warn(
f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
FutureWarning,
)
return model_file
except: # noqa: E722
warnings.warn(
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
FutureWarning,
)
try:
# 2. Load model file as usual
model_file = hf_hub_download(
pretrained_model_name_or_path,
filename=weights_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
subfolder=subfolder,
revision=revision or commit_hash,
)
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`."
)
except RevisionNotFoundError:
raise EnvironmentError(
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
"this model name. Check the model page at "
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
)
except EntryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
)
except HTTPError as err:
raise EnvironmentError(
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}"
)
except ValueError:
raise EnvironmentError(
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
f" directory containing a file named {weights_name} or"
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
)
except EnvironmentError:
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
f"containing a file named {weights_name}"
)
|