File size: 6,252 Bytes
5f093a6
 
 
 
5833474
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import math
from pathlib import Path
import torch
from torch.utils.data import Dataset
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import sys


def get_pose(transformation):
    # transformation: 4x4
    return transformation

class ObjaverseData(Dataset):
    def __init__(self,
                 root_dir='.objaverse/hf-objaverse-v1/views',
                 image_transforms=None,
                 total_view=12,
                 validation=False,
                 T_in=1,
                 T_out=1,
                 fix_sample=False,
                 ) -> None:
        """Create a dataset from a folder of images.
        If you pass in a root directory it will be searched for images
        ending in ext (ext can be a list)
        """
        self.root_dir = Path(root_dir)
        self.total_view = total_view
        self.T_in = T_in
        self.T_out = T_out
        self.fix_sample = fix_sample

        self.paths = []
        # # include all folders
        # for folder in os.listdir(self.root_dir):
        #     if os.path.isdir(os.path.join(self.root_dir, folder)):
        #         self.paths.append(folder)
        # load ids from .npy so we have exactly the same ids/order
        self.paths = np.load("../scripts/obj_ids.npy")
        # # only use 100K objects for ablation study
        # self.paths = self.paths[:100000]
        total_objects = len(self.paths)
        assert total_objects == 790152, 'total objects %d' % total_objects
        if validation:
            self.paths = self.paths[math.floor(total_objects / 100. * 99.):]  # used last 1% as validation
        else:
            self.paths = self.paths[:math.floor(total_objects / 100. * 99.)]  # used first 99% as training
        print('============= length of dataset %d =============' % len(self.paths))
        self.tform = image_transforms

        downscale = 512 / 256.
        self.fx = 560. / downscale
        self.fy = 560. / downscale
        self.intrinsic = torch.tensor([[self.fx, 0, 128., 0, self.fy, 128., 0, 0, 1.]], dtype=torch.float64).view(3, 3)

    def __len__(self):
        return len(self.paths)

    def get_pose(self, transformation):
        # transformation: 4x4
        return transformation


    def load_im(self, path, color):
        '''
        replace background pixel with random color in rendering
        '''
        try:
            img = plt.imread(path)
        except:
            print(path)
            sys.exit()
        img[img[:, :, -1] == 0.] = color
        img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
        return img

    def __getitem__(self, index):
        data = {}
        total_view = 12

        if self.fix_sample:
            if self.T_out > 1:
                indexes = range(total_view)
                index_targets = list(indexes[:2]) + list(indexes[-(self.T_out-2):])
                index_inputs = indexes[1:self.T_in+1]   # one overlap identity
            else:
                indexes = range(total_view)
                index_targets = indexes[:self.T_out]
                index_inputs = indexes[self.T_out-1:self.T_in+self.T_out-1] # one overlap identity
        else:
            assert self.T_in + self.T_out <= total_view
            # training with replace, including identity
            indexes = np.random.choice(range(total_view), self.T_in+self.T_out, replace=True)
            index_inputs = indexes[:self.T_in]
            index_targets = indexes[self.T_in:]
        filename = os.path.join(self.root_dir, self.paths[index])

        color = [1., 1., 1., 1.]

        try:
            input_ims = []
            target_ims = []
            target_Ts = []
            cond_Ts = []
            for i, index_input in enumerate(index_inputs):
                input_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_input), color))
                input_ims.append(input_im)
                input_RT = np.load(os.path.join(filename, '%03d.npy' % index_input))
                cond_Ts.append(self.get_pose(np.concatenate([input_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
            for i, index_target in enumerate(index_targets):
                target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
                target_ims.append(target_im)
                target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
                target_Ts.append(self.get_pose(np.concatenate([target_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
        except:
            print('error loading data ', filename)
            filename = os.path.join(self.root_dir, '0a01f314e2864711aa7e33bace4bd8c8')  # this one we know is valid
            input_ims = []
            target_ims = []
            target_Ts = []
            cond_Ts = []
            # very hacky solution, sorry about this
            for i, index_input in enumerate(index_inputs):
                input_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_input), color))
                input_ims.append(input_im)
                input_RT = np.load(os.path.join(filename, '%03d.npy' % index_input))
                cond_Ts.append(self.get_pose(np.concatenate([input_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
            for i, index_target in enumerate(index_targets):
                target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
                target_ims.append(target_im)
                target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
                target_Ts.append(self.get_pose(np.concatenate([target_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))

        # stack to batch
        data['image_input'] = torch.stack(input_ims, dim=0)
        data['image_target'] = torch.stack(target_ims, dim=0)
        data['pose_out'] = np.stack(target_Ts)
        data['pose_out_inv'] = np.linalg.inv(np.stack(target_Ts)).transpose([0, 2, 1])
        data['pose_in'] = np.stack(cond_Ts)
        data['pose_in_inv'] = np.linalg.inv(np.stack(cond_Ts)).transpose([0, 2, 1])
        return data

    def process_im(self, im):
        im = im.convert("RGB")
        return self.tform(im)