Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,808 Bytes
e371ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import argparse
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path
import trimesh
from omegaconf import OmegaConf
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, Callback
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import Trainer
from skimage.io import imsave
from tqdm import tqdm
import mcubes
from renderer.renderer import NeuSRenderer, DEFAULT_SIDE_LENGTH
from util import instantiate_from_config, read_pickle
class ResumeCallBacks(Callback):
def __init__(self):
pass
def on_train_start(self, trainer, pl_module):
pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups
def render_images(model, output,):
# render from model
n = 180
azimuths = (np.arange(n) / n * np.pi * 2).astype(np.float32)
elevations = np.deg2rad(np.asarray([30] * n).astype(np.float32))
K, _, _, _, poses = read_pickle(f'meta_info/camera-16.pkl')
output_points
h, w = 256, 256
default_size = 256
K = np.diag([w/default_size,h/default_size,1.0]) @ K
imgs = []
for ni in tqdm(range(n)):
# R = euler2mat(azimuths[ni], elevations[ni], 0, 'szyx')
# R = np.asarray([[0,-1,0],[0,0,-1],[1,0,0]]) @ R
e, a = elevations[ni], azimuths[ni]
row1 = np.asarray([np.sin(e)*np.cos(a),np.sin(e)*np.sin(a),-np.cos(e)])
row0 = np.asarray([-np.sin(a),np.cos(a), 0])
row2 = np.cross(row0, row1)
R = np.stack([row0,row1,row2],0)
t = np.asarray([0,0,1.5])
pose = np.concatenate([R,t[:,None]],1)
pose_ = torch.from_numpy(pose.astype(np.float32)).unsqueeze(0)
K_ = torch.from_numpy(K.astype(np.float32)).unsqueeze(0) # [1,3,3]
coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)] # h,w,2
coords = coords.float()[None, :, :, :].repeat(1, 1, 1, 1) # imn,h,w,2
coords = coords.reshape(1, h * w, 2)
coords = torch.cat([coords, torch.ones(1, h * w, 1, dtype=torch.float32)], 2) # imn,h*w,3
# imn,h*w,3 @ imn,3,3 => imn,h*w,3
rays_d = coords @ torch.inverse(K_).permute(0, 2, 1)
R, t = pose_[:, :, :3], pose_[:, :, 3:]
rays_d = rays_d @ R
rays_d = F.normalize(rays_d, dim=-1)
rays_o = -R.permute(0, 2, 1) @ t # imn,3,3 @ imn,3,1
rays_o = rays_o.permute(0, 2, 1).repeat(1, h * w, 1) # imn,h*w,3
ray_batch = {
'rays_o': rays_o.reshape(-1,3).cuda(),
'rays_d': rays_d.reshape(-1,3).cuda(),
}
with torch.no_grad():
image = model.renderer.render(ray_batch,False,5000)['rgb'].reshape(h,w,3)
image = (image.cpu().numpy() * 255).astype(np.uint8)
imgs.append(image)
imageio.mimsave(f'{output}/rendering.mp4', imgs, fps=30)
def extract_fields(bound_min, bound_max, resolution, query_func, batch_size=64, outside_val=1.0):
N = batch_size
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).cuda()
val = query_func(pts).detach()
outside_mask = torch.norm(pts,dim=-1)>=1.0
val[outside_mask]=outside_val
val = val.reshape(len(xs), len(ys), len(zs)).cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
return u
def extract_geometry(bound_min, bound_max, resolution, threshold, query_func, color_func, outside_val=1.0):
u = extract_fields(bound_min, bound_max, resolution, query_func, outside_val=outside_val)
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
vertex_colors = color_func(vertices)
return vertices, triangles, vertex_colors
def extract_mesh(model, output, resolution=512):
if not isinstance(model.renderer, NeuSRenderer): return
bbox_min = -torch.ones(3)*DEFAULT_SIDE_LENGTH
bbox_max = torch.ones(3)*DEFAULT_SIDE_LENGTH
with torch.no_grad():
vertices, triangles, vertex_colors = extract_geometry(bbox_min, bbox_max, resolution, 0, lambda x: model.renderer.sdf_network.sdf(x), lambda x: model.renderer.get_vertex_colors(x))
# output geometry
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertex_colors)
mesh.export(str(f'{output}/mesh.ply'))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--image_path', type=str, required=True)
parser.add_argument('-n', '--name', type=str, required=True)
parser.add_argument('-b', '--base', type=str, default='configs/neus.yaml')
parser.add_argument('-d', '--data_path', type=str, default='/data/GSO/')
parser.add_argument('-l', '--log', type=str, default='output/renderer')
parser.add_argument('-s', '--seed', type=int, default=6033)
parser.add_argument('-g', '--gpus', type=str, default='0,')
parser.add_argument('-r', '--resume', action='store_true', default=False, dest='resume')
parser.add_argument('--fp16', action='store_true', default=False, dest='fp16')
opt = parser.parse_args()
# seed_everything(opt.seed)
# configs
cfg = OmegaConf.load(opt.base)
name = opt.name
log_dir, ckpt_dir = Path(opt.log) / name, Path(opt.log) / name / 'ckpt'
cfg.model.params['image_path'] = opt.image_path
cfg.model.params['log_dir'] = log_dir
cfg.model.params['data_path'] = opt.data_path
# setup
log_dir.mkdir(exist_ok=True, parents=True)
ckpt_dir.mkdir(exist_ok=True, parents=True)
trainer_config = cfg.trainer
callback_config = cfg.callbacks
model_config = cfg.model
data_config = cfg.data
data_config.params.seed = opt.seed
data = instantiate_from_config(data_config)
data.prepare_data()
data.setup('fit')
model = instantiate_from_config(model_config,)
model.cpu()
model.learning_rate = model_config.base_lr
# logger
logger = TensorBoardLogger(save_dir=log_dir, name='tensorboard_logs')
callbacks=[]
callbacks.append(LearningRateMonitor(logging_interval='step'))
callbacks.append(ModelCheckpoint(dirpath=ckpt_dir, filename="{epoch:06}", verbose=True, save_last=True, every_n_train_steps=callback_config.save_interval))
# trainer
trainer_config.update({
"accelerator": "cuda", "check_val_every_n_epoch": None,
"benchmark": True, "num_sanity_val_steps": 0,
"devices": 1, "gpus": opt.gpus,
})
if opt.fp16:
trainer_config['precision']=16
if opt.resume:
callbacks.append(ResumeCallBacks())
trainer_config['resume_from_checkpoint'] = str(ckpt_dir / 'last.ckpt')
else:
if (ckpt_dir / 'last.ckpt').exists():
raise RuntimeError(f"checkpoint {ckpt_dir / 'last.ckpt'} existing ...")
trainer = Trainer.from_argparse_args(args=argparse.Namespace(), **trainer_config, logger=logger, callbacks=callbacks)
trainer.fit(model, data)
model = model.cuda().eval()
# render_images(model, log_dir)
extract_mesh(model, log_dir)
if __name__=="__main__":
main() |