File size: 7,808 Bytes
e371ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse

import imageio
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path

import trimesh
from omegaconf import OmegaConf
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, Callback
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import Trainer
from skimage.io import imsave
from tqdm import tqdm

import mcubes

from renderer.renderer import NeuSRenderer, DEFAULT_SIDE_LENGTH
from util import instantiate_from_config, read_pickle

class ResumeCallBacks(Callback):
    def __init__(self):
        pass

    def on_train_start(self, trainer, pl_module):
        pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups

def render_images(model, output,):
    # render from model
    n = 180
    azimuths = (np.arange(n) / n * np.pi * 2).astype(np.float32)
    elevations = np.deg2rad(np.asarray([30] * n).astype(np.float32))
    K, _, _, _, poses = read_pickle(f'meta_info/camera-16.pkl')
    output_points
    h, w = 256, 256
    default_size = 256
    K = np.diag([w/default_size,h/default_size,1.0]) @ K
    imgs = []
    for ni in tqdm(range(n)):
        # R = euler2mat(azimuths[ni], elevations[ni], 0, 'szyx')
        # R = np.asarray([[0,-1,0],[0,0,-1],[1,0,0]]) @ R
        e, a = elevations[ni], azimuths[ni]
        row1 = np.asarray([np.sin(e)*np.cos(a),np.sin(e)*np.sin(a),-np.cos(e)])
        row0 = np.asarray([-np.sin(a),np.cos(a), 0])
        row2 = np.cross(row0, row1)
        R = np.stack([row0,row1,row2],0)
        t = np.asarray([0,0,1.5])
        pose = np.concatenate([R,t[:,None]],1)
        pose_ = torch.from_numpy(pose.astype(np.float32)).unsqueeze(0)
        K_ = torch.from_numpy(K.astype(np.float32)).unsqueeze(0) # [1,3,3]

        coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)]  # h,w,2
        coords = coords.float()[None, :, :, :].repeat(1, 1, 1, 1)  # imn,h,w,2
        coords = coords.reshape(1, h * w, 2)
        coords = torch.cat([coords, torch.ones(1, h * w, 1, dtype=torch.float32)], 2)  # imn,h*w,3

        # imn,h*w,3 @ imn,3,3 => imn,h*w,3
        rays_d = coords @ torch.inverse(K_).permute(0, 2, 1)
        R, t = pose_[:, :, :3], pose_[:, :, 3:]
        rays_d = rays_d @ R
        rays_d = F.normalize(rays_d, dim=-1)
        rays_o = -R.permute(0, 2, 1) @ t  # imn,3,3 @ imn,3,1
        rays_o = rays_o.permute(0, 2, 1).repeat(1, h * w, 1)  # imn,h*w,3

        ray_batch = {
            'rays_o': rays_o.reshape(-1,3).cuda(),
            'rays_d': rays_d.reshape(-1,3).cuda(),
        }
        with torch.no_grad():
            image = model.renderer.render(ray_batch,False,5000)['rgb'].reshape(h,w,3)
        image = (image.cpu().numpy() * 255).astype(np.uint8)
        imgs.append(image)

    imageio.mimsave(f'{output}/rendering.mp4', imgs, fps=30)

def extract_fields(bound_min, bound_max, resolution, query_func, batch_size=64, outside_val=1.0):
    N = batch_size
    X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
    Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
    Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)

    u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
    with torch.no_grad():
        for xi, xs in enumerate(X):
            for yi, ys in enumerate(Y):
                for zi, zs in enumerate(Z):
                    xx, yy, zz = torch.meshgrid(xs, ys, zs)
                    pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).cuda()
                    val = query_func(pts).detach()
                    outside_mask = torch.norm(pts,dim=-1)>=1.0
                    val[outside_mask]=outside_val
                    val = val.reshape(len(xs), len(ys), len(zs)).cpu().numpy()
                    u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
    return u

def extract_geometry(bound_min, bound_max, resolution, threshold, query_func, color_func, outside_val=1.0):
    u = extract_fields(bound_min, bound_max, resolution, query_func, outside_val=outside_val)
    vertices, triangles = mcubes.marching_cubes(u, threshold)
    b_max_np = bound_max.detach().cpu().numpy()
    b_min_np = bound_min.detach().cpu().numpy()

    vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    vertex_colors = color_func(vertices)
    return vertices, triangles, vertex_colors

def extract_mesh(model, output, resolution=512):
    if not isinstance(model.renderer, NeuSRenderer): return
    bbox_min = -torch.ones(3)*DEFAULT_SIDE_LENGTH
    bbox_max = torch.ones(3)*DEFAULT_SIDE_LENGTH
    with torch.no_grad():
        vertices, triangles, vertex_colors = extract_geometry(bbox_min, bbox_max, resolution, 0, lambda x: model.renderer.sdf_network.sdf(x), lambda x: model.renderer.get_vertex_colors(x))

    # output geometry
    mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertex_colors)
    mesh.export(str(f'{output}/mesh.ply'))

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--image_path', type=str, required=True)
    parser.add_argument('-n', '--name', type=str, required=True)
    parser.add_argument('-b', '--base', type=str, default='configs/neus.yaml')
    parser.add_argument('-d', '--data_path', type=str, default='/data/GSO/')
    parser.add_argument('-l', '--log', type=str, default='output/renderer')
    parser.add_argument('-s', '--seed', type=int, default=6033)
    parser.add_argument('-g', '--gpus', type=str, default='0,')
    parser.add_argument('-r', '--resume', action='store_true', default=False, dest='resume')
    parser.add_argument('--fp16', action='store_true', default=False, dest='fp16')
    opt = parser.parse_args()
    # seed_everything(opt.seed)

    # configs
    cfg = OmegaConf.load(opt.base)
    name = opt.name
    log_dir, ckpt_dir = Path(opt.log) / name, Path(opt.log) / name / 'ckpt'
    cfg.model.params['image_path'] = opt.image_path
    cfg.model.params['log_dir'] = log_dir
    cfg.model.params['data_path'] = opt.data_path

    # setup
    log_dir.mkdir(exist_ok=True, parents=True)
    ckpt_dir.mkdir(exist_ok=True, parents=True)
    trainer_config = cfg.trainer
    callback_config = cfg.callbacks
    model_config = cfg.model
    data_config = cfg.data

    data_config.params.seed = opt.seed
    data = instantiate_from_config(data_config)
    data.prepare_data()
    data.setup('fit')

    model = instantiate_from_config(model_config,)
    model.cpu()
    model.learning_rate = model_config.base_lr

    # logger
    logger = TensorBoardLogger(save_dir=log_dir, name='tensorboard_logs')
    callbacks=[]
    callbacks.append(LearningRateMonitor(logging_interval='step'))
    callbacks.append(ModelCheckpoint(dirpath=ckpt_dir, filename="{epoch:06}", verbose=True, save_last=True, every_n_train_steps=callback_config.save_interval))

    # trainer
    trainer_config.update({
        "accelerator": "cuda", "check_val_every_n_epoch": None,
        "benchmark": True, "num_sanity_val_steps": 0,
        "devices": 1, "gpus": opt.gpus,
    })
    if opt.fp16:
        trainer_config['precision']=16

    if opt.resume:
        callbacks.append(ResumeCallBacks())
        trainer_config['resume_from_checkpoint'] = str(ckpt_dir / 'last.ckpt')
    else:
        if (ckpt_dir / 'last.ckpt').exists():
            raise RuntimeError(f"checkpoint {ckpt_dir / 'last.ckpt'} existing ...")
    trainer = Trainer.from_argparse_args(args=argparse.Namespace(), **trainer_config, logger=logger, callbacks=callbacks)

    trainer.fit(model, data)

    model = model.cuda().eval()

    # render_images(model, log_dir)
    extract_mesh(model, log_dir)

if __name__=="__main__":
    main()