Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,146 Bytes
5ca3a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
import spaces
import torch
print("cuda is available: ", torch.cuda.is_available())
import gradio as gr
import os
import shutil
import rembg
import numpy as np
import math
import open3d as o3d
from PIL import Image
import torchvision
import trimesh
from skimage.io import imsave
import imageio
import cv2
import matplotlib.pyplot as pl
pl.ion()
CaPE_TYPE = "6DoF"
device = 'cuda' #if torch.cuda.is_available() else 'cpu'
weight_dtype = torch.float16
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
# EscherNet
# create angles in archimedean spiral with N steps
def get_archimedean_spiral(sphere_radius, num_steps=250):
# x-z plane, around upper y
'''
https://en.wikipedia.org/wiki/Spiral, section "Spherical spiral". c = a / pi
'''
a = 40
r = sphere_radius
translations = []
angles = []
# i = a / 2
i = 0.01
while i < a:
theta = i / a * math.pi
x = r * math.sin(theta) * math.cos(-i)
z = r * math.sin(-theta + math.pi) * math.sin(-i)
y = r * - math.cos(theta)
# translations.append((x, y, z)) # origin
translations.append((x, z, -y))
angles.append([np.rad2deg(-i), np.rad2deg(theta)])
# i += a / (2 * num_steps)
i += a / (1 * num_steps)
return np.array(translations), np.stack(angles)
def look_at(origin, target, up):
forward = (target - origin)
forward = forward / np.linalg.norm(forward)
right = np.cross(up, forward)
right = right / np.linalg.norm(right)
new_up = np.cross(forward, right)
rotation_matrix = np.column_stack((right, new_up, -forward, target))
matrix = np.row_stack((rotation_matrix, [0, 0, 0, 1]))
return matrix
import einops
import sys
sys.path.insert(0, "./6DoF/") # TODO change it when deploying
# use the customized diffusers modules
from diffusers import DDIMScheduler
from dataset import get_pose
from CN_encoder import CN_encoder
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from segment_anything import sam_model_registry, SamPredictor
# import rembg
from carvekit.api.high import HiInterface
pretrained_model_name_or_path = "kxic/EscherNet_demo"
resolution = 256
h,w = resolution,resolution
guidance_scale = 3.0
radius = 2.2
bg_color = [1., 1., 1., 1.]
image_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((resolution, resolution)), # 256, 256
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5], [0.5])
]
)
xyzs_spiral, angles_spiral = get_archimedean_spiral(1.5, 200)
# only half toop
xyzs_spiral = xyzs_spiral[:100]
angles_spiral = angles_spiral[:100]
# Init pipeline
scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler", revision=None)
image_encoder = CN_encoder.from_pretrained(pretrained_model_name_or_path, subfolder="image_encoder", revision=None)
pipeline = Zero1to3StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
revision=None,
scheduler=scheduler,
image_encoder=None,
safety_checker=None,
feature_extractor=None,
torch_dtype=weight_dtype,
)
pipeline.image_encoder = image_encoder.to(weight_dtype)
pipeline.set_progress_bar_config(disable=False)
pipeline = pipeline.to(device)
# pipeline.enable_xformers_memory_efficient_attention()
# enable vae slicing
pipeline.enable_vae_slicing()
# pipeline.enable_xformers_memory_efficient_attention()
#### object segmentation
def sam_init():
sam_checkpoint = os.path.join("./sam_pt/sam_vit_h_4b8939.pth")
if os.path.exists(sam_checkpoint) is False:
os.system("wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P ./sam_pt/")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device)
predictor = SamPredictor(sam)
return predictor
def create_carvekit_interface():
# Check doc strings for more information
interface = HiInterface(object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=6,
batch_size_matting=1,
device="cpu",
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True)
return interface
# rembg_session = rembg.new_session()
rembg_session = create_carvekit_interface()
predictor = sam_init()
@spaces.GPU(duration=120)
def run_eschernet(eschernet_input_dict, sample_steps, sample_seed, nvs_num, nvs_mode):
# set the random seed
generator = torch.Generator(device=device).manual_seed(sample_seed)
# generator = None
T_out = nvs_num
T_in = len(eschernet_input_dict['imgs'])
####### output pose
# TODO choose T_out number of poses sequentially from the spiral
xyzs = xyzs_spiral[::(len(xyzs_spiral) // T_out)]
angles_out = angles_spiral[::(len(xyzs_spiral) // T_out)]
####### input's max radius for translation scaling
radii = eschernet_input_dict['radii']
max_t = np.max(radii)
min_t = np.min(radii)
####### input pose
pose_in = []
for T_in_index in range(T_in):
pose = get_pose(np.linalg.inv(eschernet_input_dict['poses'][T_in_index]))
pose[1:3, :] *= -1 # coordinate system conversion
pose[3, 3] *= 1. / max_t * radius # scale radius to [1.5, 2.2]
pose_in.append(torch.from_numpy(pose))
####### input image
img = eschernet_input_dict['imgs'] / 255.
img[img[:, :, :, -1] == 0.] = bg_color
# TODO batch image_transforms
input_image = [image_transforms(Image.fromarray(np.uint8(im[:, :, :3] * 255.)).convert("RGB")) for im in img]
####### nvs pose
pose_out = []
for T_out_index in range(T_out):
azimuth, polar = angles_out[T_out_index]
if CaPE_TYPE == "4DoF":
pose_out.append(torch.tensor([np.deg2rad(polar), np.deg2rad(azimuth), 0., 0.]))
elif CaPE_TYPE == "6DoF":
pose = look_at(origin=np.array([0, 0, 0]), target=xyzs[T_out_index], up=np.array([0, 0, 1]))
pose = np.linalg.inv(pose)
pose[2, :] *= -1
pose_out.append(torch.from_numpy(get_pose(pose)))
# [B, T, C, H, W]
input_image = torch.stack(input_image, dim=0).to(device).to(weight_dtype).unsqueeze(0)
# [B, T, 4]
pose_in = np.stack(pose_in)
pose_out = np.stack(pose_out)
if CaPE_TYPE == "6DoF":
pose_in_inv = np.linalg.inv(pose_in).transpose([0, 2, 1])
pose_out_inv = np.linalg.inv(pose_out).transpose([0, 2, 1])
pose_in_inv = torch.from_numpy(pose_in_inv).to(device).to(weight_dtype).unsqueeze(0)
pose_out_inv = torch.from_numpy(pose_out_inv).to(device).to(weight_dtype).unsqueeze(0)
pose_in = torch.from_numpy(pose_in).to(device).to(weight_dtype).unsqueeze(0)
pose_out = torch.from_numpy(pose_out).to(device).to(weight_dtype).unsqueeze(0)
input_image = einops.rearrange(input_image, "b t c h w -> (b t) c h w")
assert T_in == input_image.shape[0]
assert T_in == pose_in.shape[1]
assert T_out == pose_out.shape[1]
# run inference
# pipeline.to(device)
pipeline.enable_xformers_memory_efficient_attention()
image = pipeline(input_imgs=input_image, prompt_imgs=input_image,
poses=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]],
height=h, width=w, T_in=T_in, T_out=T_out,
guidance_scale=guidance_scale, num_inference_steps=50, generator=generator,
output_type="numpy").images
# save output image
output_dir = os.path.join(tmpdirname, "eschernet")
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
# # save to N imgs
# for i in range(T_out):
# imsave(os.path.join(output_dir, f'{i}.png'), (image[i] * 255).astype(np.uint8))
# make a gif
frames = [Image.fromarray((image[i] * 255).astype(np.uint8)) for i in range(T_out)]
# frame_one = frames[0]
# frame_one.save(os.path.join(output_dir, "output.gif"), format="GIF", append_images=frames,
# save_all=True, duration=50, loop=1)
# get a video
video_path = os.path.join(output_dir, "output.mp4")
imageio.mimwrite(video_path, np.stack(frames), fps=10, codec='h264')
return video_path
# TODO mesh it
@spaces.GPU(duration=120)
def make3d():
pass
############################ Dust3r as Pose Estimation ############################
from scipy.spatial.transform import Rotation
import copy
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images, rgb
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
import math
@spaces.GPU(duration=120)
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False, same_focals=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world)
if not same_focals:
assert (len(cams2world) == len(focals))
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# add axes
scene.add_geometry(trimesh.creation.axis(axis_length=0.5, axis_radius=0.001))
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
if same_focals:
focal = focals[0]
else:
focal = focals[i]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focal,
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
@spaces.GPU(duration=120)
def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, same_focals=False):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = to_numpy(scene.imgs)
focals = to_numpy(scene.get_focals().cpu())
# cams2world = to_numpy(scene.get_im_poses().cpu())
# TODO use the vis_poses
cams2world = scene.vis_poses
# 3D pointcloud from depthmap, poses and intrinsics
# pts3d = to_numpy(scene.get_pts3d())
# TODO use the vis_poses
pts3d = scene.vis_pts3d
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, silent=silent,
same_focals=same_focals)
@spaces.GPU(duration=120)
def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, same_focals):
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
silent = False
image_size = 224
# remove the directory if it already exists
outdir = tmpdirname
if os.path.exists(outdir):
shutil.rmtree(outdir)
os.makedirs(outdir, exist_ok=True)
imgs, imgs_rgba = load_images(filelist, size=image_size, verbose=not silent, do_remove_background=True, rembg_session=rembg_session, predictor=predictor)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=device, mode=mode, verbose=not silent, same_focals=same_focals)
lr = 0.01
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
# outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals=same_focals)
# also return rgb, depth and confidence imgs
# depth is normalized with the max value for all images
# we apply the jet colormap on the confidence maps
rgbimg = scene.imgs
# depths = to_numpy(scene.get_depthmaps())
# confs = to_numpy([c for c in scene.im_conf])
# cmap = pl.get_cmap('jet')
# depths_max = max([d.max() for d in depths])
# depths = [d / depths_max for d in depths]
# confs_max = max([d.max() for d in confs])
# confs = [cmap(d / confs_max) for d in confs]
imgs = []
rgbaimg = []
for i in range(len(rgbimg)): # when only 1 image, scene.imgs is two
imgs.append(rgbimg[i])
# imgs.append(rgb(depths[i]))
# imgs.append(rgb(confs[i]))
# imgs.append(imgs_rgba[i])
if len(imgs_rgba) == 1 and i == 1:
imgs.append(imgs_rgba[0])
rgbaimg.append(np.array(imgs_rgba[0]))
else:
imgs.append(imgs_rgba[i])
rgbaimg.append(np.array(imgs_rgba[i]))
rgbaimg = np.array(rgbaimg)
# for eschernet
# get optimized values from scene
rgbimg = to_numpy(scene.imgs)
# focals = to_numpy(scene.get_focals().cpu())
cams2world = to_numpy(scene.get_im_poses().cpu())
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
obj_mask = rgbaimg[..., 3] > 0
# TODO set global coordinate system at the center of the scene, z-axis is up
pts = np.concatenate([p[m] for p, m in zip(pts3d, msk)]).reshape(-1, 3)
pts_obj = np.concatenate([p[m&obj_m] for p, m, obj_m in zip(pts3d, msk, obj_mask)]).reshape(-1, 3)
centroid = np.mean(pts_obj, axis=0) # obj center
obj2world = np.eye(4)
obj2world[:3, 3] = -centroid # T_wc
# get z_up vector
# TODO fit a plane and get the normal vector
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pts)
plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
# get the normalised normal vector dim = 3
normal = plane_model[:3] / np.linalg.norm(plane_model[:3])
# the normal direction should be pointing up
if normal[1] < 0:
normal = -normal
# print("normal", normal)
# # TODO z-up 180
# z_up = np.array([[1,0,0,0],
# [0,-1,0,0],
# [0,0,-1,0],
# [0,0,0,1]])
# obj2world = z_up @ obj2world
# # avg the y
# z_up_avg = cams2world[:,:3,3].sum(0) / np.linalg.norm(cams2world[:,:3,3].sum(0), axis=-1) # average direction in cam coordinate
# # import pdb; pdb.set_trace()
# rot_axis = np.cross(np.array([0, 0, 1]), z_up_avg)
# rot_angle = np.arccos(np.dot(np.array([0, 0, 1]), z_up_avg) / (np.linalg.norm(z_up_avg) + 1e-6))
# rot = Rotation.from_rotvec(rot_angle * rot_axis)
# z_up = np.eye(4)
# z_up[:3, :3] = rot.as_matrix()
# get the rotation matrix from normal to z-axis
z_axis = np.array([0, 0, 1])
rot_axis = np.cross(normal, z_axis)
rot_angle = np.arccos(np.dot(normal, z_axis) / (np.linalg.norm(normal) + 1e-6))
rot = Rotation.from_rotvec(rot_angle * rot_axis)
z_up = np.eye(4)
z_up[:3, :3] = rot.as_matrix()
obj2world = z_up @ obj2world
# flip 180
flip_rot = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
obj2world = flip_rot @ obj2world
# get new cams2obj
cams2obj = []
for i, cam2world in enumerate(cams2world):
cams2obj.append(obj2world @ cam2world)
# TODO transform pts3d to the new coordinate system
for i, pts in enumerate(pts3d):
pts3d[i] = (obj2world @ np.concatenate([pts, np.ones_like(pts)[..., :1]], axis=-1).transpose(2, 0, 1).reshape(4,
-1)) \
.reshape(4, pts.shape[0], pts.shape[1]).transpose(1, 2, 0)[..., :3]
cams2world = np.array(cams2obj)
# TODO rewrite hack
scene.vis_poses = cams2world.copy()
scene.vis_pts3d = pts3d.copy()
# TODO save cams2world and rgbimg to each file, file name "000.npy", "001.npy", ... and "000.png", "001.png", ...
for i, (img, img_rgba, pose) in enumerate(zip(rgbimg, rgbaimg, cams2world)):
np.save(os.path.join(outdir, f"{i:03d}.npy"), pose)
pl.imsave(os.path.join(outdir, f"{i:03d}.png"), img)
pl.imsave(os.path.join(outdir, f"{i:03d}_rgba.png"), img_rgba)
# np.save(os.path.join(outdir, f"{i:03d}_focal.npy"), to_numpy(focal))
# save the min/max radius of camera
radii = np.linalg.norm(np.linalg.inv(cams2world)[..., :3, 3])
np.save(os.path.join(outdir, "radii.npy"), radii)
eschernet_input = {"poses": cams2world,
"radii": radii,
"imgs": rgbaimg}
print("got eschernet input")
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, same_focals=same_focals)
return scene, outfile, imgs, eschernet_input
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
num_files = len(inputfiles) if inputfiles is not None else 1
max_winsize = max(1, math.ceil((num_files - 1) / 2))
if scenegraph_type == "swin":
winsize = gr.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=True)
refid = gr.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=False)
elif scenegraph_type == "oneref":
winsize = gr.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gr.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=True)
else:
winsize = gr.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gr.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=False)
return winsize, refid
def get_examples(path):
objs = []
for obj_name in sorted(os.listdir(path)):
img_files = []
for img_file in sorted(os.listdir(os.path.join(path, obj_name))):
img_files.append(os.path.join(path, obj_name, img_file))
objs.append([img_files])
print("objs = ", objs)
return objs
def preview_input(inputfiles):
if inputfiles is None:
return None
imgs = []
for img_file in inputfiles:
img = pl.imread(img_file)
imgs.append(img)
return imgs
# def main():
# dustr init
silent = False
image_size = 224
weights_path = 'checkpoints/DUSt3R_ViTLarge_BaseDecoder_224_linear.pth'
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
# dust3r will write the 3D model inside tmpdirname
# with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname:
tmpdirname = os.path.join('logs/user_object')
# remove the directory if it already exists
if os.path.exists(tmpdirname):
shutil.rmtree(tmpdirname)
os.makedirs(tmpdirname, exist_ok=True)
if not silent:
print('Outputing stuff in', tmpdirname)
_HEADER_ = '''
<h2><b>[CVPR'24 Oral] EscherNet: A Generative Model for Scalable View Synthesis</b></h2>
<b>EscherNet</b> is a multiview diffusion model for scalable generative any-to-any number/pose novel view synthesis.
Image views are treated as tokens and the camera pose is encoded by <b>CaPE (Camera Positional Encoding)</b>.
<a href='https://kxhit.github.io/EscherNet' target='_blank'>Project</a> <b>|</b>
<a href='https://github.com/kxhit/EscherNet' target='_blank'>GitHub</a> <b>|</b>
<a href='https://arxiv.org/abs/2402.03908' target='_blank'>ArXiv</a>
<h4><b>Tips:</b></h4>
- Our model can take <b>any number input images</b>. The more images you provide <b>(>=3 for this demo)</b>, the better the results.
- Our model can generate <b>any number and any pose</b> novel views. You can specify the number of views you want to generate. In this demo, we set novel views on an <b>archemedian spiral</b> for simplicity.
- The pose estimation is done using <a href='https://github.com/naver/dust3r' target='_blank'>DUSt3R</a>. You can also provide your own poses or get pose via any SLAM system.
- The current checkpoint supports 6DoF camera pose and is trained on 30k 3D <a href='https://objaverse.allenai.org/' target='_blank'>Objaverse</a> objects for demo. Scaling is on the roadmap!
'''
_CITE_ = r"""
📝 <b>Citation</b>:
```bibtex
@article{kong2024eschernet,
title={EscherNet: A Generative Model for Scalable View Synthesis},
author={Kong, Xin and Liu, Shikun and Lyu, Xiaoyang and Taher, Marwan and Qi, Xiaojuan and Davison, Andrew J},
journal={arXiv preprint arXiv:2402.03908},
year={2024}
}
```
"""
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
# mv_images = gr.State()
scene = gr.State(None)
eschernet_input = gr.State(None)
with gr.Row(variant="panel"):
# left column
with gr.Column():
with gr.Row():
input_image = gr.File(file_count="multiple")
with gr.Row():
run_dust3r = gr.Button("Get Pose!", elem_id="dust3r")
with gr.Row():
processed_image = gr.Gallery(label='Input Views', columns=2, height="100%")
with gr.Row(variant="panel"):
# input examples under "examples" folder
gr.Examples(
examples=get_examples('examples'),
inputs=[input_image],
label="Examples (click one set of images to start!)",
examples_per_page=20
)
# right column
with gr.Column():
with gr.Row():
outmodel = gr.Model3D()
with gr.Row():
gr.Markdown('''
<h4><b>Check if the pose (blue is axis is estimated z-up direction) and segmentation looks correct. If not, remove the incorrect images and try again.</b></h4>
''')
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
sample_steps = gr.Slider(
label="Sample Steps",
minimum=30,
maximum=75,
value=50,
step=5,
visible=False
)
nvs_num = gr.Slider(
label="Number of Novel Views",
minimum=5,
maximum=100,
value=30,
step=1
)
nvs_mode = gr.Dropdown(["archimedes circle"], # "fixed 4 views", "fixed 8 views"
value="archimedes circle", label="Novel Views Pose Chosen", visible=True)
with gr.Row():
gr.Markdown('''
<h4><b>Choose your desired novel view poses number and generate! The more output images the longer it takes.</b></h4>
''')
with gr.Row():
submit = gr.Button("Submit", elem_id="eschernet", variant="primary")
with gr.Row():
with gr.Column():
output_video = gr.Video(
label="video", format="mp4",
width=379,
autoplay=True,
interactive=False
)
with gr.Row():
gr.Markdown('''
<h4><b>The novel views are generated on an archimedean spiral (rotating around z-up axis and looking at the object center). You can download the video.</b></h4>
''')
gr.Markdown(_CITE_)
# set dust3r parameter invisible to be clean
with gr.Column():
with gr.Row():
schedule = gr.Dropdown(["linear", "cosine"],
value='linear', label="schedule", info="For global alignment!", visible=False)
niter = gr.Number(value=300, precision=0, minimum=0, maximum=5000,
label="num_iterations", info="For global alignment!", visible=False)
scenegraph_type = gr.Dropdown(["complete", "swin", "oneref"],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True, visible=False)
same_focals = gr.Checkbox(value=True, label="Focal", info="Use the same focal for all cameras", visible=False)
winsize = gr.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1, visible=False)
refid = gr.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
with gr.Row():
# adjust the confidence threshold
min_conf_thr = gr.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False)
# adjust the camera size in the output pointcloud
cam_size = gr.Slider(label="cam_size", value=0.05, minimum=0.01, maximum=0.5, step=0.001, visible=False)
with gr.Row():
as_pointcloud = gr.Checkbox(value=False, label="As pointcloud", visible=False)
# two post process implemented
mask_sky = gr.Checkbox(value=False, label="Mask sky", visible=False)
clean_depth = gr.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
transparent_cams = gr.Checkbox(value=False, label="Transparent cameras", visible=False)
# events
# scenegraph_type.change(set_scenegraph_options,
# inputs=[input_image, winsize, refid, scenegraph_type],
# outputs=[winsize, refid])
# min_conf_thr.release(fn=model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# cam_size.change(fn=model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# as_pointcloud.change(fn=model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# mask_sky.change(fn=model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# clean_depth.change(fn=model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# transparent_cams.change(model_from_scene_fun,
# inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size, same_focals],
# outputs=outmodel)
# run_dust3r.click(fn=recon_fun,
# inputs=[input_image, schedule, niter, min_conf_thr, as_pointcloud,
# mask_sky, clean_depth, transparent_cams, cam_size,
# scenegraph_type, winsize, refid, same_focals],
# outputs=[scene, outmodel, processed_image, eschernet_input])
# events
input_image.change(set_scenegraph_options,
inputs=[input_image, winsize, refid, scenegraph_type],
outputs=[winsize, refid])
run_dust3r.click(fn=get_reconstructed_scene,
inputs=[input_image, schedule, niter, min_conf_thr, as_pointcloud,
mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, same_focals],
outputs=[scene, outmodel, processed_image, eschernet_input])
# events
input_image.change(fn=preview_input,
inputs=[input_image],
outputs=[processed_image])
submit.click(fn=run_eschernet,
inputs=[eschernet_input, sample_steps, sample_seed,
nvs_num, nvs_mode],
outputs=[output_video])
# demo.queue(max_size=10)
# demo.launch(share=True, server_name="0.0.0.0", server_port=None)
demo.queue(max_size=10).launch()
# if __name__ == '__main__':
# main() |