Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Initialization functions for global alignment | |
# -------------------------------------------------------- | |
from functools import cache | |
import numpy as np | |
import scipy.sparse as sp | |
import torch | |
import cv2 | |
import roma | |
from tqdm import tqdm | |
from mini_dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses | |
from mini_dust3r.post_process import estimate_focal_knowing_depth | |
from mini_dust3r.viz import to_numpy | |
from mini_dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores | |
def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3): | |
device = self.device | |
# indices of known poses | |
nkp, known_poses_msk, known_poses = get_known_poses(self) | |
assert nkp == self.n_imgs, 'not all poses are known' | |
# get all focals | |
nkf, _, im_focals = get_known_focals(self) | |
assert nkf == self.n_imgs | |
im_pp = self.get_principal_points() | |
best_depthmaps = {} | |
# init all pairwise poses | |
for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)): | |
i_j = edge_str(i, j) | |
# find relative pose for this pair | |
P1 = torch.eye(4, device=device) | |
msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1) | |
_, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()), | |
pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP) | |
# align the two predicted camera with the two gt cameras | |
s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]]) | |
# normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1 | |
# and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3]) | |
self._set_pose(self.pw_poses, e, R, T, scale=s) | |
# remember if this is a good depthmap | |
score = float(self.conf_i[i_j].mean()) | |
if score > best_depthmaps.get(i, (0,))[0]: | |
best_depthmaps[i] = score, i_j, s | |
# init all image poses | |
for n in range(self.n_imgs): | |
assert known_poses_msk[n] | |
_, i_j, scale = best_depthmaps[n] | |
depth = self.pred_i[i_j][:, :, 2] | |
self._set_depthmap(n, depth * scale) | |
def init_minimum_spanning_tree(self, **kw): | |
""" Init all camera poses (image-wise and pairwise poses) given | |
an initial set of pairwise estimations. | |
""" | |
device = self.device | |
pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges, | |
self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr, | |
device, has_im_poses=self.has_im_poses, verbose=self.verbose, | |
**kw) | |
return init_from_pts3d(self, pts3d, im_focals, im_poses) | |
def init_from_pts3d(self, pts3d, im_focals, im_poses): | |
# init poses | |
nkp, known_poses_msk, known_poses = get_known_poses(self) | |
if nkp == 1: | |
raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose") | |
elif nkp > 1: | |
# global rigid SE3 alignment | |
s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk]) | |
trf = sRT_to_4x4(s, R, T, device=known_poses.device) | |
# rotate everything | |
im_poses = trf @ im_poses | |
im_poses[:, :3, :3] /= s # undo scaling on the rotation part | |
for img_pts3d in pts3d: | |
img_pts3d[:] = geotrf(trf, img_pts3d) | |
# set all pairwise poses | |
for e, (i, j) in enumerate(self.edges): | |
i_j = edge_str(i, j) | |
# compute transform that goes from cam to world | |
s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]) | |
self._set_pose(self.pw_poses, e, R, T, scale=s) | |
# take into account the scale normalization | |
s_factor = self.get_pw_norm_scale_factor() | |
im_poses[:, :3, 3] *= s_factor # apply downscaling factor | |
for img_pts3d in pts3d: | |
img_pts3d *= s_factor | |
# init all image poses | |
if self.has_im_poses: | |
for i in range(self.n_imgs): | |
cam2world = im_poses[i] | |
depth = geotrf(inv(cam2world), pts3d[i])[..., 2] | |
self._set_depthmap(i, depth) | |
self._set_pose(self.im_poses, i, cam2world) | |
if im_focals[i] is not None: | |
self._set_focal(i, im_focals[i]) | |
if self.verbose: | |
print(' init loss =', float(self())) | |
def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr, | |
device, has_im_poses=True, niter_PnP=10, verbose=True): | |
n_imgs = len(imshapes) | |
sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j)) | |
msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo() | |
# temp variable to store 3d points | |
pts3d = [None] * len(imshapes) | |
todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges | |
im_poses = [None] * n_imgs | |
im_focals = [None] * n_imgs | |
# init with strongest edge | |
score, i, j = todo.pop() | |
if verbose: | |
print(f' init edge ({i}*,{j}*) {score=}') | |
i_j = edge_str(i, j) | |
pts3d[i] = pred_i[i_j].clone() | |
pts3d[j] = pred_j[i_j].clone() | |
done = {i, j} | |
if has_im_poses: | |
im_poses[i] = torch.eye(4, device=device) | |
im_focals[i] = estimate_focal(pred_i[i_j]) | |
# set initial pointcloud based on pairwise graph | |
msp_edges = [(i, j)] | |
while todo: | |
# each time, predict the next one | |
score, i, j = todo.pop() | |
if im_focals[i] is None: | |
im_focals[i] = estimate_focal(pred_i[i_j]) | |
if i in done: | |
if verbose: | |
print(f' init edge ({i},{j}*) {score=}') | |
assert j not in done | |
# align pred[i] with pts3d[i], and then set j accordingly | |
i_j = edge_str(i, j) | |
s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j]) | |
trf = sRT_to_4x4(s, R, T, device) | |
pts3d[j] = geotrf(trf, pred_j[i_j]) | |
done.add(j) | |
msp_edges.append((i, j)) | |
if has_im_poses and im_poses[i] is None: | |
im_poses[i] = sRT_to_4x4(1, R, T, device) | |
elif j in done: | |
if verbose: | |
print(f' init edge ({i}*,{j}) {score=}') | |
assert i not in done | |
i_j = edge_str(i, j) | |
s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j]) | |
trf = sRT_to_4x4(s, R, T, device) | |
pts3d[i] = geotrf(trf, pred_i[i_j]) | |
done.add(i) | |
msp_edges.append((i, j)) | |
if has_im_poses and im_poses[i] is None: | |
im_poses[i] = sRT_to_4x4(1, R, T, device) | |
else: | |
# let's try again later | |
todo.insert(0, (score, i, j)) | |
if has_im_poses: | |
# complete all missing informations | |
pair_scores = list(sparse_graph.values()) # already negative scores: less is best | |
edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)] | |
for i, j in edges_from_best_to_worse.tolist(): | |
if im_focals[i] is None: | |
im_focals[i] = estimate_focal(pred_i[edge_str(i, j)]) | |
for i in range(n_imgs): | |
if im_poses[i] is None: | |
msk = im_conf[i] > min_conf_thr | |
res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP) | |
if res: | |
im_focals[i], im_poses[i] = res | |
if im_poses[i] is None: | |
im_poses[i] = torch.eye(4, device=device) | |
im_poses = torch.stack(im_poses) | |
else: | |
im_poses = im_focals = None | |
return pts3d, msp_edges, im_focals, im_poses | |
def dict_to_sparse_graph(dic): | |
n_imgs = max(max(e) for e in dic) + 1 | |
res = sp.dok_array((n_imgs, n_imgs)) | |
for edge, value in dic.items(): | |
res[edge] = value | |
return res | |
def rigid_points_registration(pts1, pts2, conf): | |
R, T, s = roma.rigid_points_registration( | |
pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True) | |
return s, R, T # return un-scaled (R, T) | |
def sRT_to_4x4(scale, R, T, device): | |
trf = torch.eye(4, device=device) | |
trf[:3, :3] = R * scale | |
trf[:3, 3] = T.ravel() # doesn't need scaling | |
return trf | |
def estimate_focal(pts3d_i, pp=None): | |
if pp is None: | |
H, W, THREE = pts3d_i.shape | |
assert THREE == 3 | |
pp = torch.tensor((W/2, H/2), device=pts3d_i.device) | |
focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel() | |
return float(focal) | |
def pixel_grid(H, W): | |
return np.mgrid[:W, :H].T.astype(np.float32) | |
def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10): | |
# extract camera poses and focals with RANSAC-PnP | |
if msk.sum() < 4: | |
return None # we need at least 4 points for PnP | |
pts3d, msk = map(to_numpy, (pts3d, msk)) | |
H, W, THREE = pts3d.shape | |
assert THREE == 3 | |
pixels = pixel_grid(H, W) | |
if focal is None: | |
S = max(W, H) | |
tentative_focals = np.geomspace(S/2, S*3, 21) | |
else: | |
tentative_focals = [focal] | |
if pp is None: | |
pp = (W/2, H/2) | |
else: | |
pp = to_numpy(pp) | |
best = 0, | |
for focal in tentative_focals: | |
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) | |
success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, | |
iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) | |
if not success: | |
continue | |
score = len(inliers) | |
if success and score > best[0]: | |
best = score, R, T, focal | |
if not best[0]: | |
return None | |
_, R, T, best_focal = best | |
R = cv2.Rodrigues(R)[0] # world to cam | |
R, T = map(torch.from_numpy, (R, T)) | |
return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world | |
def get_known_poses(self): | |
if self.has_im_poses: | |
known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses]) | |
known_poses = self.get_im_poses() | |
return known_poses_msk.sum(), known_poses_msk, known_poses | |
else: | |
return 0, None, None | |
def get_known_focals(self): | |
if self.has_im_poses: | |
known_focal_msk = self.get_known_focal_mask() | |
known_focals = self.get_focals() | |
return known_focal_msk.sum(), known_focal_msk, known_focals | |
else: | |
return 0, None, None | |
def align_multiple_poses(src_poses, target_poses): | |
N = len(src_poses) | |
assert src_poses.shape == target_poses.shape == (N, 4, 4) | |
def center_and_z(poses): | |
eps = get_med_dist_between_poses(poses) / 100 | |
return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2])) | |
R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True) | |
return s, R, T | |