Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mini_dust3r.cloud_opt.base_opt import BasePCOptimizer | |
from mini_dust3r.utils.geometry import geotrf | |
from mini_dust3r.utils.device import to_cpu, to_numpy | |
from mini_dust3r.utils.geometry import depthmap_to_pts3d | |
class ModularPointCloudOptimizer (BasePCOptimizer): | |
""" Optimize a global scene, given a list of pairwise observations. | |
Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics) | |
Graph node: images | |
Graph edges: observations = (pred1, pred2) | |
""" | |
def __init__(self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.has_im_poses = True # by definition of this class | |
self.focal_brake = focal_brake | |
# adding thing to optimize | |
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) | |
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses | |
default_focals = [self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes] | |
self.im_focals = nn.ParameterList(torch.FloatTensor([f, f] if fx_and_fy else [ | |
f]) for f in default_focals) # camera intrinsics | |
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics | |
self.im_pp.requires_grad_(optimize_pp) | |
def preset_pose(self, known_poses, pose_msk=None): # cam-to-world | |
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: | |
known_poses = [known_poses] | |
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): | |
if self.verbose: | |
print(f' (setting pose #{idx} = {pose[:3,3]})') | |
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True)) | |
# normalize scale if there's less than 1 known pose | |
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) | |
self.norm_pw_scale = (n_known_poses <= 1) | |
def preset_intrinsics(self, known_intrinsics, msk=None): | |
if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: | |
known_intrinsics = [known_intrinsics] | |
for K in known_intrinsics: | |
assert K.shape == (3, 3) | |
self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) | |
self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) | |
def preset_focal(self, known_focals, msk=None): | |
for idx, focal in zip(self._get_msk_indices(msk), known_focals): | |
if self.verbose: | |
print(f' (setting focal #{idx} = {focal})') | |
self._no_grad(self._set_focal(idx, focal, force=True)) | |
def preset_principal_point(self, known_pp, msk=None): | |
for idx, pp in zip(self._get_msk_indices(msk), known_pp): | |
if self.verbose: | |
print(f' (setting principal point #{idx} = {pp})') | |
self._no_grad(self._set_principal_point(idx, pp, force=True)) | |
def _no_grad(self, tensor): | |
return tensor.requires_grad_(False) | |
def _get_msk_indices(self, msk): | |
if msk is None: | |
return range(self.n_imgs) | |
elif isinstance(msk, int): | |
return [msk] | |
elif isinstance(msk, (tuple, list)): | |
return self._get_msk_indices(np.array(msk)) | |
elif msk.dtype in (bool, torch.bool, np.bool_): | |
assert len(msk) == self.n_imgs | |
return np.where(msk)[0] | |
elif np.issubdtype(msk.dtype, np.integer): | |
return msk | |
else: | |
raise ValueError(f'bad {msk=}') | |
def _set_focal(self, idx, focal, force=False): | |
param = self.im_focals[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = self.focal_brake * np.log(focal) | |
return param | |
def get_focals(self): | |
log_focals = torch.stack(list(self.im_focals), dim=0) | |
return (log_focals / self.focal_brake).exp() | |
def _set_principal_point(self, idx, pp, force=False): | |
param = self.im_pp[idx] | |
H, W = self.imshapes[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 | |
return param | |
def get_principal_points(self): | |
return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)]) | |
def get_intrinsics(self): | |
K = torch.zeros((self.n_imgs, 3, 3), device=self.device) | |
focals = self.get_focals().view(self.n_imgs, -1) | |
K[:, 0, 0] = focals[:, 0] | |
K[:, 1, 1] = focals[:, -1] | |
K[:, :2, 2] = self.get_principal_points() | |
K[:, 2, 2] = 1 | |
return K | |
def get_im_poses(self): # cam to world | |
cam2world = self._get_poses(torch.stack(list(self.im_poses))) | |
return cam2world | |
def _set_depthmap(self, idx, depth, force=False): | |
param = self.im_depthmaps[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = depth.log().nan_to_num(neginf=0) | |
return param | |
def get_depthmaps(self): | |
return [d.exp() for d in self.im_depthmaps] | |
def depth_to_pts3d(self): | |
# Get depths and projection params if not provided | |
focals = self.get_focals() | |
pp = self.get_principal_points() | |
im_poses = self.get_im_poses() | |
depth = self.get_depthmaps() | |
# convert focal to (1,2,H,W) constant field | |
def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i]) | |
# get pointmaps in camera frame | |
rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])] | |
# project to world frame | |
return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] | |
def get_pts3d(self): | |
return self.depth_to_pts3d() | |