kxhit
cuda reinit?
5ca3a35
raw
history blame
3.75 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions for DUSt3R
# --------------------------------------------------------
import torch
def fill_default_args(kwargs, func):
import inspect # a bit hacky but it works reliably
signature = inspect.signature(func)
for k, v in signature.parameters.items():
if v.default is inspect.Parameter.empty:
continue
kwargs.setdefault(k, v.default)
return kwargs
def freeze_all_params(modules):
for module in modules:
try:
for n, param in module.named_parameters():
param.requires_grad = False
except AttributeError:
# module is directly a parameter
module.requires_grad = False
def is_symmetrized(gt1, gt2):
x = gt1['instance']
y = gt2['instance']
if len(x) == len(y) and len(x) == 1:
return False # special case of batchsize 1
ok = True
for i in range(0, len(x), 2):
ok = ok and (x[i] == y[i+1]) and (x[i+1] == y[i])
return ok
def flip(tensor):
""" flip so that tensor[0::2] <=> tensor[1::2] """
return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1)
def interleave(tensor1, tensor2):
res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1)
res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1)
return res1, res2
def transpose_to_landscape(head, activate=True):
""" Predict in the correct aspect-ratio,
then transpose the result in landscape
and stack everything back together.
"""
def wrapper_no(decout, true_shape):
B = len(true_shape)
assert true_shape[0:1].allclose(true_shape), 'true_shape must be all identical'
H, W = true_shape[0].cpu().tolist()
res = head(decout, (H, W))
return res
def wrapper_yes(decout, true_shape):
B = len(true_shape)
# by definition, the batch is in landscape mode so W >= H
H, W = int(true_shape.min()), int(true_shape.max())
height, width = true_shape.T
is_landscape = (width >= height)
is_portrait = ~is_landscape
# true_shape = true_shape.cpu()
if is_landscape.all():
return head(decout, (H, W))
if is_portrait.all():
return transposed(head(decout, (W, H)))
# batch is a mix of both portraint & landscape
def selout(ar): return [d[ar] for d in decout]
l_result = head(selout(is_landscape), (H, W))
p_result = transposed(head(selout(is_portrait), (W, H)))
# allocate full result
result = {}
for k in l_result | p_result:
x = l_result[k].new(B, *l_result[k].shape[1:])
x[is_landscape] = l_result[k]
x[is_portrait] = p_result[k]
result[k] = x
return result
return wrapper_yes if activate else wrapper_no
def transposed(dic):
return {k: v.swapaxes(1, 2) for k, v in dic.items()}
def invalid_to_nans(arr, valid_mask, ndim=999):
if valid_mask is not None:
arr = arr.clone()
arr[~valid_mask] = float('nan')
if arr.ndim > ndim:
arr = arr.flatten(-2 - (arr.ndim - ndim), -2)
return arr
def invalid_to_zeros(arr, valid_mask, ndim=999):
if valid_mask is not None:
arr = arr.clone()
arr[~valid_mask] = 0
nnz = valid_mask.view(len(valid_mask), -1).sum(1)
else:
nnz = arr.numel() // len(arr) if len(arr) else 0 # number of point per image
if arr.ndim > ndim:
arr = arr.flatten(-2 - (arr.ndim - ndim), -2)
return arr, nnz