import gradio as gr import spaces import torch from gradio_rerun import Rerun import rerun as rr import rerun.blueprint as rrb from pathlib import Path import uuid from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result from mini_dust3r.model import AsymmetricCroCo3DStereo DEVICE = "cuda" if torch.cuda.is_available() else "cpu" model = AsymmetricCroCo3DStereo.from_pretrained( "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" ).to(DEVICE) def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint: # dont show 2d views if there are more than 4 images as to not clutter the view if len(image_name_list) > 4: blueprint = rrb.Blueprint( rrb.Horizontal( rrb.Spatial3DView(origin=f"{log_path}"), ), collapse_panels=True, ) else: blueprint = rrb.Blueprint( rrb.Horizontal( contents=[ rrb.Spatial3DView(origin=f"{log_path}"), rrb.Vertical( contents=[ rrb.Spatial2DView( origin=f"{log_path}/camera_{i}/pinhole/", contents=[ "+ $origin/**", ], ) for i in range(len(image_name_list)) ] ), ], column_shares=[3, 1], ), collapse_panels=True, ) return blueprint @spaces.GPU def predict(image_name_list: list[str] | str): # check if is list or string and if not raise error if not isinstance(image_name_list, list) and not isinstance(image_name_list, str): raise gr.Error( f"Input must be a list of strings or a string, got: {type(image_name_list)}" ) uuid_str = str(uuid.uuid4()) filename = Path(f"/tmp/gradio/{uuid_str}.rrd") rr.init(f"{uuid_str}") log_path = Path("world") if isinstance(image_name_list, str): image_name_list = [image_name_list] optimized_results: OptimizedResult = inferece_dust3r( image_dir_or_list=image_name_list, model=model, device=DEVICE, batch_size=1, ) blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path) rr.send_blueprint(blueprint) rr.set_time_sequence("sequence", 0) log_optimized_result(optimized_results, log_path) rr.save(filename.as_posix()) return filename.as_posix() with gr.Blocks( css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Mini-DUSt3R Demo", ) as demo: # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference gr.HTML('

Mini-DUSt3R Demo

') gr.HTML( '

Unofficial DUSt3R demo using the mini-dust3r pip package

' ) gr.HTML( '

More info here

' ) with gr.Tab(label="Single Image"): with gr.Column(): single_image = gr.Image(type="filepath", height=300) run_btn_single = gr.Button("Run") rerun_viewer_single = Rerun(height=900) run_btn_single.click( fn=predict, inputs=[single_image], outputs=[rerun_viewer_single] ) example_single_dir = Path("examples/single_image") example_single_files = sorted(example_single_dir.glob("*.png")) examples_single = gr.Examples( examples=example_single_files, inputs=[single_image], outputs=[rerun_viewer_single], fn=predict, cache_examples="lazy", ) with gr.Tab(label="Multi Image"): with gr.Column(): multi_files = gr.File(file_count="multiple") run_btn_multi = gr.Button("Run") rerun_viewer_multi = Rerun(height=900) run_btn_multi.click( fn=predict, inputs=[multi_files], outputs=[rerun_viewer_multi] ) demo.launch()