# Copyright 2023 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): """ The variance preserving stochastic differential equation (SDE) scheduler. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more information, see the original paper: https://arxiv.org/abs/2011.13456 UNDER CONSTRUCTION """ order = 1 @register_to_config def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): self.sigmas = None self.discrete_sigmas = None self.timesteps = None def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None): self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) def step_pred(self, score, x, t, generator=None): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score log_mean_coeff = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) std = std.flatten() while len(std.shape) < len(score.shape): std = std.unsqueeze(-1) score = -score / std # compute dt = -1.0 / len(self.timesteps) beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) beta_t = beta_t.flatten() while len(beta_t.shape) < len(x.shape): beta_t = beta_t.unsqueeze(-1) drift = -0.5 * beta_t * x diffusion = torch.sqrt(beta_t) drift = drift - diffusion**2 * score x_mean = x + drift * dt # add noise noise = randn_tensor(x.shape, layout=x.layout, generator=generator, device=x.device, dtype=x.dtype) x = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__(self): return self.config.num_train_timesteps