File size: 10,820 Bytes
dbf90d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import numpy as np
import time
import sys
import argparse
import errno
from collections import OrderedDict
import tensorboardX
from tqdm import tqdm
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader

from lib.utils.tools import *
from lib.utils.learning import *
from lib.model.loss import *
from lib.data.dataset_action import NTURGBD, NTURGBD1Shot
from lib.model.model_action import ActionNet

from lib.model.loss_supcon import SupConLoss
from pytorch_metric_learning import samplers

random.seed(0)
np.random.seed(0)
torch.manual_seed(0)

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="configs/pretrain.yaml", help="Path to the config file.")
    parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH', help='checkpoint directory')
    parser.add_argument('-p', '--pretrained', default='checkpoint', type=str, metavar='PATH', help='pretrained checkpoint directory')
    parser.add_argument('-r', '--resume', default='', type=str, metavar='FILENAME', help='checkpoint to resume (file name)')
    parser.add_argument('-e', '--evaluate', default='', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)')
    parser.add_argument('-freq', '--print_freq', default=100)
    parser.add_argument('-ms', '--selection', default='best_epoch.bin', type=str, metavar='FILENAME', help='checkpoint to finetune (file name)')
    opts = parser.parse_args()
    return opts

def extract_feats(dataloader_x, model):
    all_feats = []
    all_gts = []
    with torch.no_grad():
        for idx, (batch_input, batch_gt) in tqdm(enumerate(dataloader_x)):    # (N, 2, T, 17, 3)
            if torch.cuda.is_available():
                batch_input = batch_input.cuda()      
            feat = model(batch_input)
            all_feats.append(feat)
            all_gts.append(batch_gt)
    all_feats = torch.cat(all_feats)
    all_gts = torch.cat(all_gts)
    return all_feats, all_gts

def validate(anchor_loader, test_loader, model):
    train_feats, train_labels = extract_feats(anchor_loader, model)
    test_feats, test_labels = extract_feats(test_loader, model)
    M = len(train_feats)
    N = len(test_feats)
    train_feats = train_feats.unsqueeze(1)
    test_feats = test_feats.unsqueeze(0)
    dis = F.cosine_similarity(train_feats, test_feats, dim=-1)
    pred = train_labels[torch.argmax(dis, dim=0)]
    assert len(pred)==len(test_labels)
    acc = sum(pred==test_labels) / len(pred)
    return acc

def train_with_config(args, opts):
    print(args)
    try:
        os.makedirs(opts.checkpoint)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise RuntimeError('Unable to create checkpoint directory:', opts.checkpoint)
    train_writer = tensorboardX.SummaryWriter(os.path.join(opts.checkpoint, "logs"))
    model_backbone = load_backbone(args)
    if args.finetune:
        if opts.resume or opts.evaluate:
            pass
        else:
            chk_filename = os.path.join(opts.pretrained, "best_epoch.bin")
            print('Loading backbone', chk_filename)
            checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
            new_state_dict = OrderedDict()
            for k, v in checkpoint['model_pos'].items():
                name = k[7:]                                            # remove 'module.'
                new_state_dict[name] = v 
            model_backbone.load_state_dict(new_state_dict, strict=True)
            if args.partial_train:
                model_backbone = partial_train_layers(model_backbone, args.partial_train)
    model = ActionNet(backbone=model_backbone, dim_rep=args.dim_rep, dropout_ratio=args.dropout_ratio, version=args.model_version, hidden_dim=args.hidden_dim, num_joints=args.num_joints)
    criterion = SupConLoss(temperature=args.temp)
    
    if torch.cuda.is_available():
        model = nn.DataParallel(model)
        model = model.cuda()
        criterion = criterion.cuda()
        
    chk_filename = os.path.join(opts.checkpoint, "latest_epoch.bin")
    if os.path.exists(chk_filename):
        opts.resume = chk_filename
    if opts.resume or opts.evaluate:
        chk_filename = opts.evaluate if opts.evaluate else opts.resume
        print('Loading checkpoint', chk_filename)
        checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
        model.load_state_dict(checkpoint['model'], strict=True)
        
    best_acc = 0
    model_params = 0
    for parameter in model.parameters():
        model_params = model_params + parameter.numel()
    print('INFO: Trainable parameter count:', model_params)
    print('Loading dataset...')

    anchorloader_params = {
              'batch_size': args.batch_size,
              'shuffle': False,
              'num_workers': 8,
              'pin_memory': True,
              'prefetch_factor': 4,
              'persistent_workers': True
        }

    testloader_params = {
              'batch_size': args.batch_size,
              'shuffle': False,
              'num_workers': 8,
              'pin_memory': True,
              'prefetch_factor': 4,
              'persistent_workers': True
        }
    data_path_1shot = 'data/action/ntu120_hrnet_oneshot.pkl'
    ntu60_1shot_anchor = NTURGBD(data_path=data_path_1shot, data_split='oneshot_train', n_frames=args.clip_len, random_move=False, scale_range=args.scale_range_test)
    ntu60_1shot_test = NTURGBD(data_path=data_path_1shot, data_split='oneshot_val', n_frames=args.clip_len, random_move=False, scale_range=args.scale_range_test)
    anchor_loader = DataLoader(ntu60_1shot_anchor, **anchorloader_params)
    test_loader = DataLoader(ntu60_1shot_test, **testloader_params)

    if not opts.evaluate:    
        # Load training data (auxiliary set)
        data_path = 'data/action/ntu120_hrnet.pkl'
        ntu120_1shot_train = NTURGBD1Shot(data_path=data_path, data_split='', n_frames=args.clip_len, random_move=args.random_move, scale_range=args.scale_range_train, check_split=False)
        sampler = samplers.MPerClassSampler(ntu120_1shot_train.labels, m=args.n_views, batch_size=args.batch_size, length_before_new_iter=len(ntu120_1shot_train))
        trainloader_params = {
              'batch_size': args.batch_size,
              'shuffle': False,
              'num_workers': 8,
              'pin_memory': True,
              'prefetch_factor': 4,
              'persistent_workers': True,
              'sampler': sampler
        }
        train_loader = DataLoader(ntu120_1shot_train, **trainloader_params)
        optimizer = optim.AdamW(
            [     {"params": filter(lambda p: p.requires_grad, model.module.backbone.parameters()), "lr": args.lr_backbone},
                  {"params": filter(lambda p: p.requires_grad, model.module.head.parameters()), "lr": args.lr_head},
            ],      lr=args.lr_backbone, 
                    weight_decay=args.weight_decay
        )
        scheduler = StepLR(optimizer, step_size=1, gamma=args.lr_decay)
        st = 0
        print('INFO: Training on {} batches'.format(len(train_loader)))
        if opts.resume:
            st = checkpoint['epoch']
            if 'optimizer' in checkpoint and checkpoint['optimizer'] is not None:
                optimizer.load_state_dict(checkpoint['optimizer'])
            else:
                print('WARNING: this checkpoint does not contain an optimizer state. The optimizer will be reinitialized.')

            lr = checkpoint['lr']
            if 'best_acc' in checkpoint and checkpoint['best_acc'] is not None:
                best_acc = checkpoint['best_acc']
                
        # Training
        for epoch in range(st, args.epochs):
            print('Training epoch %d.' % epoch)
            losses_train = AverageMeter()
            batch_time = AverageMeter()
            data_time = AverageMeter()

            model.train()
            end = time.time()
            
            for idx, (batch_input, batch_gt) in tqdm(enumerate(train_loader)):
                data_time.update(time.time() - end)
                batch_size = len(batch_input)
                if torch.cuda.is_available():
                    batch_gt = batch_gt.cuda()
                    batch_input = batch_input.cuda()
                feat = model(batch_input) 
                feat = feat.reshape(batch_size, -1, args.hidden_dim)
                optimizer.zero_grad()
                loss_train = criterion(feat, batch_gt)
                losses_train.update(loss_train.item(), batch_size)
                loss_train.backward()
                optimizer.step()
                batch_time.update(time.time() - end)
                end = time.time()
            if (idx + 1) % opts.print_freq == 0:
                print('Train: [{0}][{1}/{2}]\t'
                      'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'loss {loss.val:.3f} ({loss.avg:.3f})\t'.format(
                       epoch, idx + 1, len(train_loader), batch_time=batch_time,
                       data_time=data_time, loss=losses_train))
                sys.stdout.flush()
            test_top1 = validate(anchor_loader, test_loader, model)
            train_writer.add_scalar('train_loss_supcon', losses_train.avg, epoch + 1)
            train_writer.add_scalar('test_top1', test_top1, epoch + 1)
            scheduler.step()
            # Save latest checkpoint.
            chk_path = os.path.join(opts.checkpoint, 'latest_epoch.bin')
            print('Saving checkpoint to', chk_path)
            torch.save({
                'epoch': epoch+1,
                'lr': scheduler.get_last_lr(),
                'optimizer': optimizer.state_dict(),
                'model': model.state_dict(),
                'best_acc' : best_acc
            }, chk_path)

            # Save best checkpoint
            best_chk_path = os.path.join(opts.checkpoint, 'best_epoch.bin'.format(epoch))
            if test_top1 > best_acc:
                best_acc = test_top1
                print("save best checkpoint")
                torch.save({
                'epoch': epoch+1,
                'lr': scheduler.get_last_lr(),
                'optimizer': optimizer.state_dict(),
                'model': model.state_dict(),
                'best_acc' : best_acc
                }, best_chk_path)
    if opts.evaluate:
        test_top1 = validate(anchor_loader, test_loader, model)
        print(test_top1)
if __name__ == "__main__":
    opts = parse_args()
    args = get_config(opts.config)
    train_with_config(args, opts)