Spaces:
Configuration error
Configuration error
import os | |
import numpy as np | |
import argparse | |
import errno | |
import math | |
import pickle | |
import tensorboardX | |
from tqdm import tqdm | |
from time import time | |
import copy | |
import random | |
import prettytable | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.utils.data import DataLoader | |
from lib.utils.tools import * | |
from lib.utils.learning import * | |
from lib.utils.utils_data import flip_data | |
from lib.data.dataset_motion_2d import PoseTrackDataset2D, InstaVDataset2D | |
from lib.data.dataset_motion_3d import MotionDataset3D | |
from lib.data.augmentation import Augmenter2D | |
from lib.data.datareader_h36m import DataReaderH36M | |
from lib.model.loss import * | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="configs/pretrain.yaml", help="Path to the config file.") | |
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH', help='checkpoint directory') | |
parser.add_argument('-p', '--pretrained', default='checkpoint', type=str, metavar='PATH', help='pretrained checkpoint directory') | |
parser.add_argument('-r', '--resume', default='', type=str, metavar='FILENAME', help='checkpoint to resume (file name)') | |
parser.add_argument('-e', '--evaluate', default='', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)') | |
parser.add_argument('-ms', '--selection', default='latest_epoch.bin', type=str, metavar='FILENAME', help='checkpoint to finetune (file name)') | |
parser.add_argument('-sd', '--seed', default=0, type=int, help='random seed') | |
opts = parser.parse_args() | |
return opts | |
def set_random_seed(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
def save_checkpoint(chk_path, epoch, lr, optimizer, model_pos, min_loss): | |
print('Saving checkpoint to', chk_path) | |
torch.save({ | |
'epoch': epoch + 1, | |
'lr': lr, | |
'optimizer': optimizer.state_dict(), | |
'model_pos': model_pos.state_dict(), | |
'min_loss' : min_loss | |
}, chk_path) | |
def evaluate(args, model_pos, test_loader, datareader): | |
print('INFO: Testing') | |
results_all = [] | |
model_pos.eval() | |
with torch.no_grad(): | |
for batch_input, batch_gt in tqdm(test_loader): | |
N, T = batch_gt.shape[:2] | |
if torch.cuda.is_available(): | |
batch_input = batch_input.cuda() | |
if args.no_conf: | |
batch_input = batch_input[:, :, :, :2] | |
if args.flip: | |
batch_input_flip = flip_data(batch_input) | |
predicted_3d_pos_1 = model_pos(batch_input) | |
predicted_3d_pos_flip = model_pos(batch_input_flip) | |
predicted_3d_pos_2 = flip_data(predicted_3d_pos_flip) # Flip back | |
predicted_3d_pos = (predicted_3d_pos_1+predicted_3d_pos_2) / 2 | |
else: | |
predicted_3d_pos = model_pos(batch_input) | |
if args.rootrel: | |
predicted_3d_pos[:,:,0,:] = 0 # [N,T,17,3] | |
else: | |
batch_gt[:,0,0,2] = 0 | |
if args.gt_2d: | |
predicted_3d_pos[...,:2] = batch_input[...,:2] | |
results_all.append(predicted_3d_pos.cpu().numpy()) | |
results_all = np.concatenate(results_all) | |
results_all = datareader.denormalize(results_all) | |
_, split_id_test = datareader.get_split_id() | |
actions = np.array(datareader.dt_dataset['test']['action']) | |
factors = np.array(datareader.dt_dataset['test']['2.5d_factor']) | |
gts = np.array(datareader.dt_dataset['test']['joints_2.5d_image']) | |
sources = np.array(datareader.dt_dataset['test']['source']) | |
num_test_frames = len(actions) | |
frames = np.array(range(num_test_frames)) | |
action_clips = actions[split_id_test] | |
factor_clips = factors[split_id_test] | |
source_clips = sources[split_id_test] | |
frame_clips = frames[split_id_test] | |
gt_clips = gts[split_id_test] | |
assert len(results_all)==len(action_clips) | |
e1_all = np.zeros(num_test_frames) | |
e2_all = np.zeros(num_test_frames) | |
oc = np.zeros(num_test_frames) | |
results = {} | |
results_procrustes = {} | |
action_names = sorted(set(datareader.dt_dataset['test']['action'])) | |
for action in action_names: | |
results[action] = [] | |
results_procrustes[action] = [] | |
block_list = ['s_09_act_05_subact_02', | |
's_09_act_10_subact_02', | |
's_09_act_13_subact_01'] | |
for idx in range(len(action_clips)): | |
source = source_clips[idx][0][:-6] | |
if source in block_list: | |
continue | |
frame_list = frame_clips[idx] | |
action = action_clips[idx][0] | |
factor = factor_clips[idx][:,None,None] | |
gt = gt_clips[idx] | |
pred = results_all[idx] | |
pred *= factor | |
# Root-relative Errors | |
pred = pred - pred[:,0:1,:] | |
gt = gt - gt[:,0:1,:] | |
err1 = mpjpe(pred, gt) | |
err2 = p_mpjpe(pred, gt) | |
e1_all[frame_list] += err1 | |
e2_all[frame_list] += err2 | |
oc[frame_list] += 1 | |
for idx in range(num_test_frames): | |
if e1_all[idx] > 0: | |
err1 = e1_all[idx] / oc[idx] | |
err2 = e2_all[idx] / oc[idx] | |
action = actions[idx] | |
results[action].append(err1) | |
results_procrustes[action].append(err2) | |
final_result = [] | |
final_result_procrustes = [] | |
summary_table = prettytable.PrettyTable() | |
summary_table.field_names = ['test_name'] + action_names | |
for action in action_names: | |
final_result.append(np.mean(results[action])) | |
final_result_procrustes.append(np.mean(results_procrustes[action])) | |
summary_table.add_row(['P1'] + final_result) | |
summary_table.add_row(['P2'] + final_result_procrustes) | |
print(summary_table) | |
e1 = np.mean(np.array(final_result)) | |
e2 = np.mean(np.array(final_result_procrustes)) | |
print('Protocol #1 Error (MPJPE):', e1, 'mm') | |
print('Protocol #2 Error (P-MPJPE):', e2, 'mm') | |
print('----------') | |
return e1, e2, results_all | |
def train_epoch(args, model_pos, train_loader, losses, optimizer, has_3d, has_gt): | |
model_pos.train() | |
for idx, (batch_input, batch_gt) in tqdm(enumerate(train_loader)): | |
batch_size = len(batch_input) | |
if torch.cuda.is_available(): | |
batch_input = batch_input.cuda() | |
batch_gt = batch_gt.cuda() | |
with torch.no_grad(): | |
if args.no_conf: | |
batch_input = batch_input[:, :, :, :2] | |
if not has_3d: | |
conf = copy.deepcopy(batch_input[:,:,:,2:]) # For 2D data, weight/confidence is at the last channel | |
if args.rootrel: | |
batch_gt = batch_gt - batch_gt[:,:,0:1,:] | |
else: | |
batch_gt[:,:,:,2] = batch_gt[:,:,:,2] - batch_gt[:,0:1,0:1,2] # Place the depth of first frame root to 0. | |
if args.mask or args.noise: | |
batch_input = args.aug.augment2D(batch_input, noise=(args.noise and has_gt), mask=args.mask) | |
# Predict 3D poses | |
predicted_3d_pos = model_pos(batch_input) # (N, T, 17, 3) | |
optimizer.zero_grad() | |
if has_3d: | |
loss_3d_pos = loss_mpjpe(predicted_3d_pos, batch_gt) | |
loss_3d_scale = n_mpjpe(predicted_3d_pos, batch_gt) | |
loss_3d_velocity = loss_velocity(predicted_3d_pos, batch_gt) | |
loss_lv = loss_limb_var(predicted_3d_pos) | |
loss_lg = loss_limb_gt(predicted_3d_pos, batch_gt) | |
loss_a = loss_angle(predicted_3d_pos, batch_gt) | |
loss_av = loss_angle_velocity(predicted_3d_pos, batch_gt) | |
loss_total = loss_3d_pos + \ | |
args.lambda_scale * loss_3d_scale + \ | |
args.lambda_3d_velocity * loss_3d_velocity + \ | |
args.lambda_lv * loss_lv + \ | |
args.lambda_lg * loss_lg + \ | |
args.lambda_a * loss_a + \ | |
args.lambda_av * loss_av | |
losses['3d_pos'].update(loss_3d_pos.item(), batch_size) | |
losses['3d_scale'].update(loss_3d_scale.item(), batch_size) | |
losses['3d_velocity'].update(loss_3d_velocity.item(), batch_size) | |
losses['lv'].update(loss_lv.item(), batch_size) | |
losses['lg'].update(loss_lg.item(), batch_size) | |
losses['angle'].update(loss_a.item(), batch_size) | |
losses['angle_velocity'].update(loss_av.item(), batch_size) | |
losses['total'].update(loss_total.item(), batch_size) | |
else: | |
loss_2d_proj = loss_2d_weighted(predicted_3d_pos, batch_gt, conf) | |
loss_total = loss_2d_proj | |
losses['2d_proj'].update(loss_2d_proj.item(), batch_size) | |
losses['total'].update(loss_total.item(), batch_size) | |
loss_total.backward() | |
optimizer.step() | |
def train_with_config(args, opts): | |
print(args) | |
try: | |
os.makedirs(opts.checkpoint) | |
except OSError as e: | |
if e.errno != errno.EEXIST: | |
raise RuntimeError('Unable to create checkpoint directory:', opts.checkpoint) | |
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.checkpoint, "logs")) | |
print('Loading dataset...') | |
trainloader_params = { | |
'batch_size': args.batch_size, | |
'shuffle': True, | |
'num_workers': 12, | |
'pin_memory': True, | |
'prefetch_factor': 4, | |
'persistent_workers': True | |
} | |
testloader_params = { | |
'batch_size': args.batch_size, | |
'shuffle': False, | |
'num_workers': 12, | |
'pin_memory': True, | |
'prefetch_factor': 4, | |
'persistent_workers': True | |
} | |
train_dataset = MotionDataset3D(args, args.subset_list, 'train') | |
test_dataset = MotionDataset3D(args, args.subset_list, 'test') | |
train_loader_3d = DataLoader(train_dataset, **trainloader_params) | |
test_loader = DataLoader(test_dataset, **testloader_params) | |
if args.train_2d: | |
posetrack = PoseTrackDataset2D() | |
posetrack_loader_2d = DataLoader(posetrack, **trainloader_params) | |
instav = InstaVDataset2D() | |
instav_loader_2d = DataLoader(instav, **trainloader_params) | |
datareader = DataReaderH36M(n_frames=args.clip_len, sample_stride=args.sample_stride, data_stride_train=args.data_stride, data_stride_test=args.clip_len, dt_root = 'data/motion3d', dt_file=args.dt_file) | |
min_loss = 100000 | |
model_backbone = load_backbone(args) | |
model_params = 0 | |
for parameter in model_backbone.parameters(): | |
model_params = model_params + parameter.numel() | |
print('INFO: Trainable parameter count:', model_params) | |
if torch.cuda.is_available(): | |
model_backbone = nn.DataParallel(model_backbone) | |
model_backbone = model_backbone.cuda() | |
if args.finetune: | |
if opts.resume or opts.evaluate: | |
chk_filename = opts.evaluate if opts.evaluate else opts.resume | |
print('Loading checkpoint', chk_filename) | |
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage) | |
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True) | |
model_pos = model_backbone | |
else: | |
chk_filename = os.path.join(opts.pretrained, opts.selection) | |
print('Loading checkpoint', chk_filename) | |
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage) | |
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True) | |
model_pos = model_backbone | |
else: | |
chk_filename = os.path.join(opts.checkpoint, "latest_epoch.bin") | |
if os.path.exists(chk_filename): | |
opts.resume = chk_filename | |
if opts.resume or opts.evaluate: | |
chk_filename = opts.evaluate if opts.evaluate else opts.resume | |
print('Loading checkpoint', chk_filename) | |
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage) | |
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True) | |
model_pos = model_backbone | |
if args.partial_train: | |
model_pos = partial_train_layers(model_pos, args.partial_train) | |
if not opts.evaluate: | |
lr = args.learning_rate | |
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model_pos.parameters()), lr=lr, weight_decay=args.weight_decay) | |
lr_decay = args.lr_decay | |
st = 0 | |
if args.train_2d: | |
print('INFO: Training on {}(3D)+{}(2D) batches'.format(len(train_loader_3d), len(instav_loader_2d) + len(posetrack_loader_2d))) | |
else: | |
print('INFO: Training on {}(3D) batches'.format(len(train_loader_3d))) | |
if opts.resume: | |
st = checkpoint['epoch'] | |
if 'optimizer' in checkpoint and checkpoint['optimizer'] is not None: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
else: | |
print('WARNING: this checkpoint does not contain an optimizer state. The optimizer will be reinitialized.') | |
lr = checkpoint['lr'] | |
if 'min_loss' in checkpoint and checkpoint['min_loss'] is not None: | |
min_loss = checkpoint['min_loss'] | |
args.mask = (args.mask_ratio > 0 and args.mask_T_ratio > 0) | |
if args.mask or args.noise: | |
args.aug = Augmenter2D(args) | |
# Training | |
for epoch in range(st, args.epochs): | |
print('Training epoch %d.' % epoch) | |
start_time = time() | |
losses = {} | |
losses['3d_pos'] = AverageMeter() | |
losses['3d_scale'] = AverageMeter() | |
losses['2d_proj'] = AverageMeter() | |
losses['lg'] = AverageMeter() | |
losses['lv'] = AverageMeter() | |
losses['total'] = AverageMeter() | |
losses['3d_velocity'] = AverageMeter() | |
losses['angle'] = AverageMeter() | |
losses['angle_velocity'] = AverageMeter() | |
N = 0 | |
# Curriculum Learning | |
if args.train_2d and (epoch >= args.pretrain_3d_curriculum): | |
train_epoch(args, model_pos, posetrack_loader_2d, losses, optimizer, has_3d=False, has_gt=True) | |
train_epoch(args, model_pos, instav_loader_2d, losses, optimizer, has_3d=False, has_gt=False) | |
train_epoch(args, model_pos, train_loader_3d, losses, optimizer, has_3d=True, has_gt=True) | |
elapsed = (time() - start_time) / 60 | |
if args.no_eval: | |
print('[%d] time %.2f lr %f 3d_train %f' % ( | |
epoch + 1, | |
elapsed, | |
lr, | |
losses['3d_pos'].avg)) | |
else: | |
e1, e2, results_all = evaluate(args, model_pos, test_loader, datareader) | |
print('[%d] time %.2f lr %f 3d_train %f e1 %f e2 %f' % ( | |
epoch + 1, | |
elapsed, | |
lr, | |
losses['3d_pos'].avg, | |
e1, e2)) | |
train_writer.add_scalar('Error P1', e1, epoch + 1) | |
train_writer.add_scalar('Error P2', e2, epoch + 1) | |
train_writer.add_scalar('loss_3d_pos', losses['3d_pos'].avg, epoch + 1) | |
train_writer.add_scalar('loss_2d_proj', losses['2d_proj'].avg, epoch + 1) | |
train_writer.add_scalar('loss_3d_scale', losses['3d_scale'].avg, epoch + 1) | |
train_writer.add_scalar('loss_3d_velocity', losses['3d_velocity'].avg, epoch + 1) | |
train_writer.add_scalar('loss_lv', losses['lv'].avg, epoch + 1) | |
train_writer.add_scalar('loss_lg', losses['lg'].avg, epoch + 1) | |
train_writer.add_scalar('loss_a', losses['angle'].avg, epoch + 1) | |
train_writer.add_scalar('loss_av', losses['angle_velocity'].avg, epoch + 1) | |
train_writer.add_scalar('loss_total', losses['total'].avg, epoch + 1) | |
# Decay learning rate exponentially | |
lr *= lr_decay | |
for param_group in optimizer.param_groups: | |
param_group['lr'] *= lr_decay | |
# Save checkpoints | |
chk_path = os.path.join(opts.checkpoint, 'epoch_{}.bin'.format(epoch)) | |
chk_path_latest = os.path.join(opts.checkpoint, 'latest_epoch.bin') | |
chk_path_best = os.path.join(opts.checkpoint, 'best_epoch.bin'.format(epoch)) | |
save_checkpoint(chk_path_latest, epoch, lr, optimizer, model_pos, min_loss) | |
if (epoch + 1) % args.checkpoint_frequency == 0: | |
save_checkpoint(chk_path, epoch, lr, optimizer, model_pos, min_loss) | |
if e1 < min_loss: | |
min_loss = e1 | |
save_checkpoint(chk_path_best, epoch, lr, optimizer, model_pos, min_loss) | |
if opts.evaluate: | |
e1, e2, results_all = evaluate(args, model_pos, test_loader, datareader) | |
if __name__ == "__main__": | |
opts = parse_args() | |
set_random_seed(opts.seed) | |
args = get_config(opts.config) | |
train_with_config(args, opts) |