MotionBERT / train.py
kzielins
motion bert project structure added
dbf90d0
import os
import numpy as np
import argparse
import errno
import math
import pickle
import tensorboardX
from tqdm import tqdm
from time import time
import copy
import random
import prettytable
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from lib.utils.tools import *
from lib.utils.learning import *
from lib.utils.utils_data import flip_data
from lib.data.dataset_motion_2d import PoseTrackDataset2D, InstaVDataset2D
from lib.data.dataset_motion_3d import MotionDataset3D
from lib.data.augmentation import Augmenter2D
from lib.data.datareader_h36m import DataReaderH36M
from lib.model.loss import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/pretrain.yaml", help="Path to the config file.")
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH', help='checkpoint directory')
parser.add_argument('-p', '--pretrained', default='checkpoint', type=str, metavar='PATH', help='pretrained checkpoint directory')
parser.add_argument('-r', '--resume', default='', type=str, metavar='FILENAME', help='checkpoint to resume (file name)')
parser.add_argument('-e', '--evaluate', default='', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)')
parser.add_argument('-ms', '--selection', default='latest_epoch.bin', type=str, metavar='FILENAME', help='checkpoint to finetune (file name)')
parser.add_argument('-sd', '--seed', default=0, type=int, help='random seed')
opts = parser.parse_args()
return opts
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def save_checkpoint(chk_path, epoch, lr, optimizer, model_pos, min_loss):
print('Saving checkpoint to', chk_path)
torch.save({
'epoch': epoch + 1,
'lr': lr,
'optimizer': optimizer.state_dict(),
'model_pos': model_pos.state_dict(),
'min_loss' : min_loss
}, chk_path)
def evaluate(args, model_pos, test_loader, datareader):
print('INFO: Testing')
results_all = []
model_pos.eval()
with torch.no_grad():
for batch_input, batch_gt in tqdm(test_loader):
N, T = batch_gt.shape[:2]
if torch.cuda.is_available():
batch_input = batch_input.cuda()
if args.no_conf:
batch_input = batch_input[:, :, :, :2]
if args.flip:
batch_input_flip = flip_data(batch_input)
predicted_3d_pos_1 = model_pos(batch_input)
predicted_3d_pos_flip = model_pos(batch_input_flip)
predicted_3d_pos_2 = flip_data(predicted_3d_pos_flip) # Flip back
predicted_3d_pos = (predicted_3d_pos_1+predicted_3d_pos_2) / 2
else:
predicted_3d_pos = model_pos(batch_input)
if args.rootrel:
predicted_3d_pos[:,:,0,:] = 0 # [N,T,17,3]
else:
batch_gt[:,0,0,2] = 0
if args.gt_2d:
predicted_3d_pos[...,:2] = batch_input[...,:2]
results_all.append(predicted_3d_pos.cpu().numpy())
results_all = np.concatenate(results_all)
results_all = datareader.denormalize(results_all)
_, split_id_test = datareader.get_split_id()
actions = np.array(datareader.dt_dataset['test']['action'])
factors = np.array(datareader.dt_dataset['test']['2.5d_factor'])
gts = np.array(datareader.dt_dataset['test']['joints_2.5d_image'])
sources = np.array(datareader.dt_dataset['test']['source'])
num_test_frames = len(actions)
frames = np.array(range(num_test_frames))
action_clips = actions[split_id_test]
factor_clips = factors[split_id_test]
source_clips = sources[split_id_test]
frame_clips = frames[split_id_test]
gt_clips = gts[split_id_test]
assert len(results_all)==len(action_clips)
e1_all = np.zeros(num_test_frames)
e2_all = np.zeros(num_test_frames)
oc = np.zeros(num_test_frames)
results = {}
results_procrustes = {}
action_names = sorted(set(datareader.dt_dataset['test']['action']))
for action in action_names:
results[action] = []
results_procrustes[action] = []
block_list = ['s_09_act_05_subact_02',
's_09_act_10_subact_02',
's_09_act_13_subact_01']
for idx in range(len(action_clips)):
source = source_clips[idx][0][:-6]
if source in block_list:
continue
frame_list = frame_clips[idx]
action = action_clips[idx][0]
factor = factor_clips[idx][:,None,None]
gt = gt_clips[idx]
pred = results_all[idx]
pred *= factor
# Root-relative Errors
pred = pred - pred[:,0:1,:]
gt = gt - gt[:,0:1,:]
err1 = mpjpe(pred, gt)
err2 = p_mpjpe(pred, gt)
e1_all[frame_list] += err1
e2_all[frame_list] += err2
oc[frame_list] += 1
for idx in range(num_test_frames):
if e1_all[idx] > 0:
err1 = e1_all[idx] / oc[idx]
err2 = e2_all[idx] / oc[idx]
action = actions[idx]
results[action].append(err1)
results_procrustes[action].append(err2)
final_result = []
final_result_procrustes = []
summary_table = prettytable.PrettyTable()
summary_table.field_names = ['test_name'] + action_names
for action in action_names:
final_result.append(np.mean(results[action]))
final_result_procrustes.append(np.mean(results_procrustes[action]))
summary_table.add_row(['P1'] + final_result)
summary_table.add_row(['P2'] + final_result_procrustes)
print(summary_table)
e1 = np.mean(np.array(final_result))
e2 = np.mean(np.array(final_result_procrustes))
print('Protocol #1 Error (MPJPE):', e1, 'mm')
print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
print('----------')
return e1, e2, results_all
def train_epoch(args, model_pos, train_loader, losses, optimizer, has_3d, has_gt):
model_pos.train()
for idx, (batch_input, batch_gt) in tqdm(enumerate(train_loader)):
batch_size = len(batch_input)
if torch.cuda.is_available():
batch_input = batch_input.cuda()
batch_gt = batch_gt.cuda()
with torch.no_grad():
if args.no_conf:
batch_input = batch_input[:, :, :, :2]
if not has_3d:
conf = copy.deepcopy(batch_input[:,:,:,2:]) # For 2D data, weight/confidence is at the last channel
if args.rootrel:
batch_gt = batch_gt - batch_gt[:,:,0:1,:]
else:
batch_gt[:,:,:,2] = batch_gt[:,:,:,2] - batch_gt[:,0:1,0:1,2] # Place the depth of first frame root to 0.
if args.mask or args.noise:
batch_input = args.aug.augment2D(batch_input, noise=(args.noise and has_gt), mask=args.mask)
# Predict 3D poses
predicted_3d_pos = model_pos(batch_input) # (N, T, 17, 3)
optimizer.zero_grad()
if has_3d:
loss_3d_pos = loss_mpjpe(predicted_3d_pos, batch_gt)
loss_3d_scale = n_mpjpe(predicted_3d_pos, batch_gt)
loss_3d_velocity = loss_velocity(predicted_3d_pos, batch_gt)
loss_lv = loss_limb_var(predicted_3d_pos)
loss_lg = loss_limb_gt(predicted_3d_pos, batch_gt)
loss_a = loss_angle(predicted_3d_pos, batch_gt)
loss_av = loss_angle_velocity(predicted_3d_pos, batch_gt)
loss_total = loss_3d_pos + \
args.lambda_scale * loss_3d_scale + \
args.lambda_3d_velocity * loss_3d_velocity + \
args.lambda_lv * loss_lv + \
args.lambda_lg * loss_lg + \
args.lambda_a * loss_a + \
args.lambda_av * loss_av
losses['3d_pos'].update(loss_3d_pos.item(), batch_size)
losses['3d_scale'].update(loss_3d_scale.item(), batch_size)
losses['3d_velocity'].update(loss_3d_velocity.item(), batch_size)
losses['lv'].update(loss_lv.item(), batch_size)
losses['lg'].update(loss_lg.item(), batch_size)
losses['angle'].update(loss_a.item(), batch_size)
losses['angle_velocity'].update(loss_av.item(), batch_size)
losses['total'].update(loss_total.item(), batch_size)
else:
loss_2d_proj = loss_2d_weighted(predicted_3d_pos, batch_gt, conf)
loss_total = loss_2d_proj
losses['2d_proj'].update(loss_2d_proj.item(), batch_size)
losses['total'].update(loss_total.item(), batch_size)
loss_total.backward()
optimizer.step()
def train_with_config(args, opts):
print(args)
try:
os.makedirs(opts.checkpoint)
except OSError as e:
if e.errno != errno.EEXIST:
raise RuntimeError('Unable to create checkpoint directory:', opts.checkpoint)
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.checkpoint, "logs"))
print('Loading dataset...')
trainloader_params = {
'batch_size': args.batch_size,
'shuffle': True,
'num_workers': 12,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
testloader_params = {
'batch_size': args.batch_size,
'shuffle': False,
'num_workers': 12,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
train_dataset = MotionDataset3D(args, args.subset_list, 'train')
test_dataset = MotionDataset3D(args, args.subset_list, 'test')
train_loader_3d = DataLoader(train_dataset, **trainloader_params)
test_loader = DataLoader(test_dataset, **testloader_params)
if args.train_2d:
posetrack = PoseTrackDataset2D()
posetrack_loader_2d = DataLoader(posetrack, **trainloader_params)
instav = InstaVDataset2D()
instav_loader_2d = DataLoader(instav, **trainloader_params)
datareader = DataReaderH36M(n_frames=args.clip_len, sample_stride=args.sample_stride, data_stride_train=args.data_stride, data_stride_test=args.clip_len, dt_root = 'data/motion3d', dt_file=args.dt_file)
min_loss = 100000
model_backbone = load_backbone(args)
model_params = 0
for parameter in model_backbone.parameters():
model_params = model_params + parameter.numel()
print('INFO: Trainable parameter count:', model_params)
if torch.cuda.is_available():
model_backbone = nn.DataParallel(model_backbone)
model_backbone = model_backbone.cuda()
if args.finetune:
if opts.resume or opts.evaluate:
chk_filename = opts.evaluate if opts.evaluate else opts.resume
print('Loading checkpoint', chk_filename)
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True)
model_pos = model_backbone
else:
chk_filename = os.path.join(opts.pretrained, opts.selection)
print('Loading checkpoint', chk_filename)
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True)
model_pos = model_backbone
else:
chk_filename = os.path.join(opts.checkpoint, "latest_epoch.bin")
if os.path.exists(chk_filename):
opts.resume = chk_filename
if opts.resume or opts.evaluate:
chk_filename = opts.evaluate if opts.evaluate else opts.resume
print('Loading checkpoint', chk_filename)
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True)
model_pos = model_backbone
if args.partial_train:
model_pos = partial_train_layers(model_pos, args.partial_train)
if not opts.evaluate:
lr = args.learning_rate
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model_pos.parameters()), lr=lr, weight_decay=args.weight_decay)
lr_decay = args.lr_decay
st = 0
if args.train_2d:
print('INFO: Training on {}(3D)+{}(2D) batches'.format(len(train_loader_3d), len(instav_loader_2d) + len(posetrack_loader_2d)))
else:
print('INFO: Training on {}(3D) batches'.format(len(train_loader_3d)))
if opts.resume:
st = checkpoint['epoch']
if 'optimizer' in checkpoint and checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
else:
print('WARNING: this checkpoint does not contain an optimizer state. The optimizer will be reinitialized.')
lr = checkpoint['lr']
if 'min_loss' in checkpoint and checkpoint['min_loss'] is not None:
min_loss = checkpoint['min_loss']
args.mask = (args.mask_ratio > 0 and args.mask_T_ratio > 0)
if args.mask or args.noise:
args.aug = Augmenter2D(args)
# Training
for epoch in range(st, args.epochs):
print('Training epoch %d.' % epoch)
start_time = time()
losses = {}
losses['3d_pos'] = AverageMeter()
losses['3d_scale'] = AverageMeter()
losses['2d_proj'] = AverageMeter()
losses['lg'] = AverageMeter()
losses['lv'] = AverageMeter()
losses['total'] = AverageMeter()
losses['3d_velocity'] = AverageMeter()
losses['angle'] = AverageMeter()
losses['angle_velocity'] = AverageMeter()
N = 0
# Curriculum Learning
if args.train_2d and (epoch >= args.pretrain_3d_curriculum):
train_epoch(args, model_pos, posetrack_loader_2d, losses, optimizer, has_3d=False, has_gt=True)
train_epoch(args, model_pos, instav_loader_2d, losses, optimizer, has_3d=False, has_gt=False)
train_epoch(args, model_pos, train_loader_3d, losses, optimizer, has_3d=True, has_gt=True)
elapsed = (time() - start_time) / 60
if args.no_eval:
print('[%d] time %.2f lr %f 3d_train %f' % (
epoch + 1,
elapsed,
lr,
losses['3d_pos'].avg))
else:
e1, e2, results_all = evaluate(args, model_pos, test_loader, datareader)
print('[%d] time %.2f lr %f 3d_train %f e1 %f e2 %f' % (
epoch + 1,
elapsed,
lr,
losses['3d_pos'].avg,
e1, e2))
train_writer.add_scalar('Error P1', e1, epoch + 1)
train_writer.add_scalar('Error P2', e2, epoch + 1)
train_writer.add_scalar('loss_3d_pos', losses['3d_pos'].avg, epoch + 1)
train_writer.add_scalar('loss_2d_proj', losses['2d_proj'].avg, epoch + 1)
train_writer.add_scalar('loss_3d_scale', losses['3d_scale'].avg, epoch + 1)
train_writer.add_scalar('loss_3d_velocity', losses['3d_velocity'].avg, epoch + 1)
train_writer.add_scalar('loss_lv', losses['lv'].avg, epoch + 1)
train_writer.add_scalar('loss_lg', losses['lg'].avg, epoch + 1)
train_writer.add_scalar('loss_a', losses['angle'].avg, epoch + 1)
train_writer.add_scalar('loss_av', losses['angle_velocity'].avg, epoch + 1)
train_writer.add_scalar('loss_total', losses['total'].avg, epoch + 1)
# Decay learning rate exponentially
lr *= lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
# Save checkpoints
chk_path = os.path.join(opts.checkpoint, 'epoch_{}.bin'.format(epoch))
chk_path_latest = os.path.join(opts.checkpoint, 'latest_epoch.bin')
chk_path_best = os.path.join(opts.checkpoint, 'best_epoch.bin'.format(epoch))
save_checkpoint(chk_path_latest, epoch, lr, optimizer, model_pos, min_loss)
if (epoch + 1) % args.checkpoint_frequency == 0:
save_checkpoint(chk_path, epoch, lr, optimizer, model_pos, min_loss)
if e1 < min_loss:
min_loss = e1
save_checkpoint(chk_path_best, epoch, lr, optimizer, model_pos, min_loss)
if opts.evaluate:
e1, e2, results_all = evaluate(args, model_pos, test_loader, datareader)
if __name__ == "__main__":
opts = parse_args()
set_random_seed(opts.seed)
args = get_config(opts.config)
train_with_config(args, opts)