Mathieu Lai-King
first commit
1a3b3aa
<?xml version="1.0"?>
<!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle, 1st January 2024//EN" "https://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_240101.dtd">
<PubmedArticleSet>
<PubmedArticle>
<MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated">
<PMID Version="1">36473651</PMID>
<DateCompleted>
<Year>2022</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2024</Year>
<Month>06</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-493X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2022</Year>
<Month>Dec</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Cochrane database of systematic reviews</Title>
<ISOAbbreviation>Cochrane Database Syst Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficacy and safety of COVID-19 vaccines.</ArticleTitle>
<Pagination>
<StartPage>CD015477</StartPage>
<MedlinePgn>CD015477</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">CD015477</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/14651858.CD015477</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Different forms of vaccines have been developed
to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are
in widespread use globally.&#xa0; OBJECTIVES: To assess the efficacy and
safety of COVID-19 vaccines (as a full primary vaccination series or a
booster dose) against SARS-CoV-2.</AbstractText>
<AbstractText Label="SEARCH METHODS">We searched the Cochrane COVID-19 Study
Register and the COVID-19 L&#xb7;OVE platform (last search date 5 November
2021). We also searched the WHO International Clinical Trials Registry
Platform, regulatory agency websites, and Retraction Watch.</AbstractText>
<AbstractText Label="SELECTION CRITERIA">We included randomized controlled
trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other
active vaccines, or other vaccine schedules.</AbstractText>
<AbstractText Label="DATA COLLECTION AND ANALYSIS">We used standard Cochrane
methods. We used GRADE to assess the certainty of evidence for all except
immunogenicity outcomes.&#xa0; We synthesized data for each vaccine
separately and presented summary effect estimates with 95% confidence
intervals (CIs).&#xa0; MAIN RESULTS: We included and analyzed 41 RCTs
assessing 12 different vaccines, including homologous and heterologous
vaccine schedules and the effect of booster doses. Thirty-two RCTs were
multicentre and five were multinational. The sample sizes of RCTs were 60 to
44,325 participants. Participants were aged: 18 years or older in 36 RCTs;
12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17
years in two RCTs. Twenty-nine RCTs provided results for individuals aged
over 60 years, and three RCTs included immunocompromized patients. No trials
included pregnant women. Sixteen RCTs had two-month follow-up or less, 20
RCTs had two to six months, and five RCTs had greater than six to 12 months
or less. Eighteen reports were based on preplanned interim analyses. Overall
risk of bias was low for all outcomes in eight RCTs, while 33 had concerns
for at least one outcome. We identified 343 registered RCTs with results not
yet available.&#xa0; This abstract reports results for the critical outcomes
of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious
adverse events only for the 10 WHO-approved vaccines. For remaining outcomes
and vaccines, see main text. The evidence for mortality was generally sparse
and of low or very low certainty for all WHO-approved vaccines, except
AD26.COV2.S (Janssen), which probably reduces the risk of all-cause
mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783
participants; high-certainty evidence). Confirmed symptomatic COVID-19
High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer),
mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV
(Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of
symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2:
97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273:
93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1:
70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S:
66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV:
78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%,
95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty
evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of
symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to
94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for
CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2
RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty
evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a
large reduction in incidence of severe or critical disease due to COVID-19
compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT,
46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT,
28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT,
39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976
participants). Moderate-certainty evidence found that NVX-CoV2373 probably
reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI
86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high
efficacy of CoronaVac for severe or critical disease with wide CIs, but
these results could not be pooled. Serious adverse events (SAEs) mRNA-1273,
ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India),
Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs
compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs,
34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs,
58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783
participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928
participants). In each of these, the likely absolute difference in effects
was fewer than 5/1000 participants. Evidence for SAEs is uncertain for
BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR:
BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac:
0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76,
95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI
0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of
heterologous schedules, booster doses, and efficacy against variants of
concern, see main text of review.</AbstractText>
<AbstractText Label="AUTHORS' CONCLUSIONS">Compared to placebo, most vaccines
reduce, or likely reduce, the proportion of participants with confirmed
symptomatic COVID-19, and for some, there is high-certainty evidence that
they reduce severe or critical disease. There is probably little or no
difference between most vaccines and placebo for serious adverse events.
Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines,
and this review is updated regularly on the COVID-NMA platform
(covid-nma.com). Implications for practice Due to the trial exclusions,
these results cannot be generalized to pregnant women, individuals with a
history of SARS-CoV-2 infection, or immunocompromized people. Most trials
had a short follow-up and were conducted before the emergence of variants of
concern. Implications for research Future research should evaluate the
long-term effect of vaccines, compare different vaccines and vaccine
schedules, assess vaccine efficacy and safety in specific populations, and
include outcomes such as preventing long COVID-19. Ongoing evaluation of
vaccine efficacy and effectiveness against emerging variants of concern is
also vital.</AbstractText>
<CopyrightInformation>Copyright &#xa9; 2022 The Authors. Cochrane Database of
Systematic Reviews published by John Wiley &amp; Sons, Ltd. on behalf of The
Cochrane Collaboration.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gra&#xf1;a</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosn</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Evrenoglou</LastName>
<ForeName>Theodoros</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jarde</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minozzi</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Review Group on Drugs and Alcohol, Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bergman</LastName>
<ForeName>Hanna</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Response, Cochrane, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buckley</LastName>
<ForeName>Brian S</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Response, Cochrane, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Probyn</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Response, Cochrane, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Villanueva</LastName>
<ForeName>Gemma</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Response, Cochrane, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Henschke</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Cochrane Response, Cochrane, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bonnet</LastName>
<ForeName>Hillary</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Assi</LastName>
<ForeName>Rouba</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menon</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marti</LastName>
<ForeName>Melanie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunization, Vaccines and Biologicals, World
Health Organization, Geneva, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Devane</LastName>
<ForeName>Declan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials
Methodology Research Network, National University of Ireland,
Galway, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mallon</LastName>
<ForeName>Patrick</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>UCD Centre for Experimental Pathogen Host Research and UCD
School of Medicine, University College Dublin, Dublin, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lelievre</LastName>
<ForeName>Jean-Daniel</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Immunology and Infectious Diseases,
Henri Mondor Hospital, Vaccine Research Institute, Universit&#xe9;
Paris Est Cr&#xe9;teil, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Askie</LastName>
<ForeName>Lisa M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Quality Assurance Norms and Standards Department, World
Health Organization, Geneva, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kredo</LastName>
<ForeName>Tamara</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Cochrane South Africa, South African Medical Research
Council, Cape Town, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrand</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davidson</LastName>
<ForeName>Mauricia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riveros</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tovey</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meerpohl</LastName>
<ForeName>Joerg J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Institute for Evidence in Medicine, Medical Center &amp;
Faculty of Medicine, University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cochrane Germany, Cochrane Germany Foundation, Freiburg,
Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grasselli</LastName>
<ForeName>Giacomo</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Anesthesia, Intensive Care and Emergency,
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico,
Department of Pathophysiology and Transplantation, University of
Milan, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rada</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Epistemonikos Foundation, Santiago, Chile.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UC Evidence Center, Cochrane Chile Associated Center,
Pontificia Universidad Cat&#xf3;lica de Chile, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hr&#xf3;bjartsson</LastName>
<ForeName>Asbj&#xf8;rn</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Evidence Based Medicine Odense (CEBMO) and
Cochrane Denmark, University of Southern Denmark, Odense, Denmark.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Open Patient data Explorative Network (OPEN), Odense
University Hospital, Odense, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ravaud</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaimani</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boutron</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Cochrane France, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre of Research in Epidemiology and Statistics (CRESS),
INSERM, INRAE, Universit&#xe9; de Paris, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>001</GrantID>
<Acronym>WHO_</Acronym>
<Agency>World Health Organization</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D000078182">Systematic Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2022</Year>
<Month>12</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cochrane Database Syst Rev</MedlineTA>
<NlmUniqueID>100909747</NlmUniqueID>
<ISSNLinking>1361-6137</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000722216">sinovac COVID-19 vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000722768">BIBP COVID-19 vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>76JZE5DSN6</RegistryNumber>
<NameOfSubstance UI="C000722386">BBV152 COVID-19 vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EPK39PL4R4</RegistryNumber>
<NameOfSubstance UI="D000090983">2019-nCoV Vaccine mRNA-1273</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000090983" MajorTopicYN="Y">2019-nCoV Vaccine mRNA-1273</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention &amp; control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>Carolina Gra&#xf1;a: none known. Lina Ghosn: none known. Theodoros
Evrenoglou: none known. Alexander Jarde: none known. Silvia Minozzi: no relevant
interests; Joint Co&#x2010;ordinating Editor and Method editor of the Drugs and
Alcohol Group. Hanna Bergman: Cochrane Response &#x2013; consultant; WHO &#x2013;
grant/contract (Cochrane Response was commissioned by the WHO to perform review
tasks that contribute to this publication).&#xa0;. Brian Buckley: none known.&#xa0;.
Katrin Probyn: Cochrane Response &#x2013; consultant; WHO &#x2013; consultant
(Cochrane Response was commissioned to perform review tasks that contribute to this
publication).&#xa0;. Gemma Villanueva: Cochrane Response &#x2013; employment
(Cochrane Response has been commissioned by WHO to perform parts of this systematic
review).&#xa0;. Nicholas Henschke: Cochrane Response &#x2013; consultant; WHO
&#x2013; consultant (Cochrane Response was commissioned by the WHO to perform review
tasks that contributed to this publication).&#xa0;. Hillary Bonnet: none known.
Rouba Assi: none known. Sonia Menon: P95 &#x2013; consultant. Melanie Marti: no
relevant interests; Medical Officer at WHO. Declan Devane: Health Research Board
(HRB) &#x2013; grant/contract; registered nurse and registered midwife but no longer
in clinical practice; Editor, Cochrane Pregnancy and Childbirth Group. Patrick
Mallon: AstraZeneca &#x2013; Advisory Board; spoken of vaccine effectiveness to
media (print, online, and live); works as a consultant in a hospital that provides
vaccinations; employed by St Vincent's University Hospital. Jean&#x2010;Daniel
Lelievre: no relevant interests; published numerous interviews in the national press
on the subject of COVID vaccination; Head of the Department of Infectious Diseases
and Clinical Immunology CHU Henri Mondor APHP, Cr&#xe9;teil; WHO (IVRI&#x2010;AC):
expert Vaccelarate (European project on COVID19 Vaccine): head of WP; involved with
COVICOMPARE P et M Studies (APHP, INSERM) (public fundings).&#xa0;. Lisa Askie: no
relevant interests; Co&#x2010;convenor, Cochrane Prospective Meta&#x2010;analysis
Methods Group. Tamara Kredo: no relevant interests; Medical Officer in an Infectious
Diseases Clinic at Tygerberg Hospital, Stellenbosch University. Gabriel Ferrand:
none known. Mauricia Davidson: none known. Carolina Riveros: no relevant interests;
works as an epidemiologist. David Tovey: no relevant interests; Emeritus Editor in
Chief, Feedback Editors for 2 Cochrane review groups. Joerg J Meerpohl: no relevant
interests; member of the German Standing Vaccination Committee (STIKO). Giacomo
Grasselli: Pfizer &#x2013; speaking engagement. Gabriel Rada: none known.
Asbj&#xf8;rn Hr&#xf3;bjartsson: no relevant interests; Cochrane Methodology Review
Group Editor. Philippe Ravaud: no relevant interests; involved with Mariette
CORIMUNO&#x2010;19 Collaborative 2021, the Ministry of Health, Programme Hospitalier
de Recherche Clinique, Foundation for Medical Research, and AP&#x2010;HP Foundation.
Anna Chaimani: none known. Isabelle Boutron: no relevant interests; member of
Cochrane Editorial Board.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2022</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>19</Hour>
<Minute>26</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2022</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2022</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2022</Year>
<Month>12</Month>
<Day>7</Day>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">36473651</ArticleId>
<ArticleId IdType="pmc">PMC9726273</ArticleId>
<ArticleId IdType="doi">10.1002/14651858.CD015477</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References to studies included in this review</Title>
<ReferenceList>
<Title>Ali 2021 {published data only}</Title>
<Reference>
<Citation>Ali K, Berman G, Zhou H, Deng W, Faughnan V, Coronado-Voges M, et
al. Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents. New
England Journal of Medicine 2021;385(24):2241-51.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8385554</ArticleId>
<ArticleId IdType="pubmed">34379915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Al Kaabi 2021 {published data only}</Title>
<Reference>
<Citation>Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N,
et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic
COVID-19 infection in adults: a randomized clinical trial. JAMA
2021;326(1):35-45.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8156175</ArticleId>
<ArticleId IdType="pubmed">34037666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Asano 2022 {published data only}</Title>
<Reference>
<Citation>Asano M, Okada H, Itoh Y, Hirata H, Ishikawa K, Yoshida E, et al.
Immunogenicity and safety of AZD1222 (ChAdOx1 nCoV-19) against
SARS-CoV-2 in Japan: a double-blind, randomized controlled phase 1/2
trial. International Journal of Infectious Diseases 2022;114:165-74.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8531242</ArticleId>
<ArticleId IdType="pubmed">34688944</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Bonelli 2021 {published data only}</Title>
<Reference>
<Citation>Bonelli M, Mrak D, Tobudic S, Sieghart D, Koblischke M, Mandl P,
et al. Additional heterologous versus homologous booster vaccination in
immunosuppressed patients without SARS-CoV-2 antibody seroconversion
after primary mRNA vaccination: a randomized controlled trial. medRxiv
2021 [Preprint]. [DOI: 10.1101/2021.09.05.21263125]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.05.21263125</ArticleId>
<ArticleId IdType="pubmed">35027397</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Bueno 2021 {published data only}</Title>
<Reference>
<Citation>Bueno SM, Abarca K, Gonz&#xe1;lez PA, G&#xe1;lvez NM, Soto JA,
Duarte LF, et al. Interim report: safety and immunogenicity of an
inactivated vaccine against SARS-CoV-2 in healthy Chilean adults in a
phase 3 clinical trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.03.31.21254494]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.03.31.21254494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bueno SM, Abarca K, Gonz&#xe1;lez PA, G&#xe1;lvez NM, Soto JA,
Duarte LF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2
vaccine in a subgroup of healthy adults in Chile. Clinical Infectious
Diseases 2021 Sep 19 [Epub ahead of print]. [DOI: 10.1093/cid/ciab823]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cid/ciab823</ArticleId>
<ArticleId IdType="pmc">PMC9402626</ArticleId>
<ArticleId IdType="pubmed">34537835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Clemens 2021 {published data only}</Title>
<Reference>
<Citation>Clemens SA, Folegatti PM, Emary KR, Weckx LY, Ratcliff J, Bibi S,
et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2
lineages circulating in Brazil. Nature Communications 2021;12(1):5861.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8494913</ArticleId>
<ArticleId IdType="pubmed">34615860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Dunkle 2021 {published data only}</Title>
<Reference>
<Citation>Dunkle LM, Kotloff KL, Gay CL, &#xc1;&#xf1;ez G, Adelglass JM,
Barrat Hern&#xe1;ndez AQ, et al. Efficacy and safety of NVX-CoV2373 in
adults in the United States and Mexico. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.10.05.21264567]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.10.05.21264567</ArticleId>
<ArticleId IdType="pmc">PMC8693692</ArticleId>
<ArticleId IdType="pubmed">34910859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ella 2021a {published data only}</Title>
<Reference>
<Citation>Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et
al. A Phase 1: safety and immunogenicity trial of an inactivated
SARS-CoV-2 vaccine-BBV152. medRxiv 2020 [Preprint]. [DOI:
10.1101/2020.12.11.20210419]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.12.11.20210419</ArticleId>
<ArticleId IdType="pmc">PMC7825810</ArticleId>
<ArticleId IdType="pubmed">33485468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et
al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine,
BBV152: a double-blind, randomized, phase 1 trial. Lancet Infectious
Diseases 2021;21(5):637-46.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7825810</ArticleId>
<ArticleId IdType="pubmed">33485468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ella 2021b {published data only}</Title>
<Reference>
<Citation>Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, et
al. Efficacy, safety, and lot to lot immunogenicity of an inactivated
SARS-CoV-2 vaccine (BBV152): a double-blind, randomized, controlled
phase 3 trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.06.30.21259439]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.06.30.21259439</ArticleId>
<ArticleId IdType="pmc">PMC8584828</ArticleId>
<ArticleId IdType="pubmed">34774196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>El Sahly 2021 {published data only}</Title>
<Reference>
<Citation>Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et
al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England
Journal of Medicine 2021;384(5):403-16.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7787219</ArticleId>
<ArticleId IdType="pubmed">33378609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM,
Anderson EJ, et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at
completion of blinded phase. New England Journal of Medicine
2021;385(19):1774-85.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8482810</ArticleId>
<ArticleId IdType="pubmed">34551225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food and Drug Administration. Vaccines and Related Biological
Products Advisory Committee Meeting; December 17, 2020; FDA Briefing
Document: Moderna COVID-19 vaccine. www.fda.gov/media/144434/download
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Emary 2021 {published data only}</Title>
<Reference>
<Citation>Emary KR, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al.
Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant
of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomized
controlled trial. Lancet 2021;397(10282):1351-62.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8009612</ArticleId>
<ArticleId IdType="pubmed">33798499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Fadlyana 2021 {published data only}</Title>
<Reference>
<Citation>Fadlyana E, Rusmil K, Tarigan R, Rahmadi AR, Prodjosoewojo S,
Sofiatin Y, et al. A phase III, observer-blind, randomized,
placebo-controlled study of the efficacy, safety, and immunogenicity of
SARS-CoV-2 inactivated vaccine in healthy adults aged
18&#x2013;59&#xa0;years: an interim analysis in Indonesia. Vaccine
2021;39(44):6520-8.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8461222</ArticleId>
<ArticleId IdType="pubmed">34620531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Falsey 2021 {published data only}</Title>
<Reference>
<Citation>Falsey AR, Sobieszczyk ME, Hirsch I, Sproule S, Robb ML, Corey L,
et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19
vaccine. New England Journal of Medicine 2021;385(25):2348-60.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8522798</ArticleId>
<ArticleId IdType="pubmed">34587382</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Formica 2021 {published data only}</Title>
<Reference>
<Citation>Formica N, Mallory R, Albert G, Robinson M, Plested JS, Cho I, et
al. Different dose regimens of a SARS-CoV-2 recombinant spike protein
vaccine (NVX-CoV2373) in younger and older adults: a phase 2 randomized
placebo-controlled trial. PLOS Medicine 2021;18(10):e1003769.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8486115</ArticleId>
<ArticleId IdType="pubmed">34597298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Formica N, Mallory R, Albert G, Robinson M, Plested JS, Cho I, et
al. Evaluation of a SARS-CoV-2 vaccine NVX-CoV2373 in younger and older
adults. medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.02.26.21252482]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.02.26.21252482</ArticleId>
<ArticleId IdType="pmc">PMC8486115</ArticleId>
<ArticleId IdType="pubmed">34597298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Frenck 2021 {published data only}</Title>
<Reference>
<Citation>Frenck RW Jr, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart
S, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19
vaccine in adolescents. New England Journal of Medicine
2021;385(3):239-50.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8174030</ArticleId>
<ArticleId IdType="pubmed">34043894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Guo 2021 {published data only}</Title>
<Reference>
<Citation>Guo W, Duan K, Zhang Y, Yuan Z, Zhang YB, Wang Z, et al. Safety
and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy
adults aged 18 years or older: a randomized, double-blind,
placebo-controlled, phase 1/2 trial. eClinicalMedicine 2021;38:101010.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8260504</ArticleId>
<ArticleId IdType="pubmed">34250456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Hall 2021 {published data only}</Title>
<Reference>
<Citation>Hall VG, Ferreira VH, Ku T, Ierullo M, Majchrzak-Kita B, Chaparro
C, et al. Randomized trial of a third dose of mRNA-1273 vaccine in
transplant recipients. New England Journal of Medicine
2021;385(13):1244-6.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8385563</ArticleId>
<ArticleId IdType="pubmed">34379917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Han 2021 {published data only}</Title>
<Reference>
<Citation>Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, et al. Safety,
tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine
(CoronaVac) in healthy children and adolescents: a double-blind,
randomized, controlled, phase 1/2 clinical trial. Lancet Infectious
Diseases 2021;21(12):1645-53.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8238449</ArticleId>
<ArticleId IdType="pubmed">34197764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Heath 2021 {published data only}</Title>
<Reference>
<Citation>Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et
al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. New England
Journal of Medicine 2021;385(13):1172-83.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8262625</ArticleId>
<ArticleId IdType="pubmed">34192426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et
al&#xa0;. Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.
1.1.7 variant. medRxiv 2021 [Preprint].</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Keech 2020 {published data only}</Title>
<Reference>
<Citation>Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al.
Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle
vaccine. New England Journal of Medicine&#xa0; 2020;383:2320-32.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7494251</ArticleId>
<ArticleId IdType="pubmed">32877576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Kremsner 2021 {published data only}</Title>
<Reference>
<Citation>Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, Aroca Martinez GJ,
Bonten M, Chandler R, et al. Efficacy and safety of the CVnCoV
SARS-CoV-2 mRNA vaccine candidate: results from Herald, a phase 2b/3,
randomized, observer-blinded, placebo-controlled clinical trial in ten
countries in Europe and Latin America. SSRN 2021 [Preprint]. [DOI:
10.2139/ssrn.3911826]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2139/ssrn.3911826</ArticleId>
<ArticleId IdType="pmc">PMC8610426</ArticleId>
<ArticleId IdType="pubmed">34826381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Kulkarni 2021 {published data only}</Title>
<Reference>
<Citation>Kulkarni PS, Padmapriyadarsini C, Vekemans J, Bavdekar A, Gupta M,
Kulkarni P, et al. A phase 2/3, observer-blind, randomized, controlled
study to assess the safety and immunogenicity of SII-ChAdOx1 nCOV-19
(COVID-19 vaccine) in adults in India. eClinicalMedicine 2021;42:101218.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8629682</ArticleId>
<ArticleId IdType="pubmed">34870133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Li 2021a {published data only}</Title>
<Reference>
<Citation>Li J, Hou L, Guo X, Jin P, Wu S, Zhu J, et al. Heterologous
prime-boost immunization with CoronaVac and Convidecia. medRxiv 2021
[Preprint]. [DOI: 10.1101/2021.09.03.21263062]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.03.21263062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Liu 2021 {published data only}</Title>
<Reference>
<Citation>Liu X, Shaw RH, Stuart AS, Greenland M, Aley PK, Andrews NJ, et
al. Safety and immunogenicity of heterologous versus homologous
prime-boost schedules with an adenoviral vectored and mRNA COVID-19
vaccine (Com-COV): a single-blind, randomized, non-inferiority trial.
Lancet 2021;398(10303):856-69.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8346248</ArticleId>
<ArticleId IdType="pubmed">34370971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu X, Shaw RH, Stuart AS, Greenland M, Aley PK, Andrews NJ, et
al. Safety and immunogenicity report from the Com-COV Study &#x2013; a
single-blind randomized non-inferiority trial comparing heterologous and
homologous prime-boost schedules with an adenoviral vectored and mRNA
COVID-19 vaccine. SSRN 2021 [Preprint]. [DOI: 10.2139/ssrn.3874014]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2139/ssrn.3874014</ArticleId>
<ArticleId IdType="pmc">PMC8346248</ArticleId>
<ArticleId IdType="pubmed">34370971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Logunov 2021 {published data only}</Title>
<Reference>
<Citation>Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI,
Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and
rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim
analysis of a randomized controlled phase 3 trial in Russia. Lancet
2021;397(10275):671-81.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7852454</ArticleId>
<ArticleId IdType="pubmed">33545094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Madhi 2021a {published data only}</Title>
<Reference>
<Citation>Madhi SA, Koen AL, Izu A, Fairlie L, Cutland CL, Baillie V, et al.
Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine
against SARS-CoV-2 in people living with and without HIV in South
Africa: an interim analysis of a randomized, double-blind,
placebo-controlled, phase 1B/2A trial. Lancet HIV 2021;8(9):e568-80.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8372504</ArticleId>
<ArticleId IdType="pubmed">34416193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Madhi 2021b {published data only}</Title>
<Reference>
<Citation>Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et
al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351
variant. New England Journal of Medicine 2021;384(20):1885-98.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7993410</ArticleId>
<ArticleId IdType="pubmed">33725432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Mok 2021 {published data only}</Title>
<Reference>
<Citation>Mok C, Cheng S, Chen C, Yiu K, Chan TO, Lai KC, et al. A RCT of a
third dose CoronaVac or BNT162b2 vaccine in adults with two doses of
CoronaVac. medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.11.02.21265843]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.11.02.21265843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Palacios 2020 {published data only}</Title>
<Reference>
<Citation>Palacios R, Pati&#xf1;o EG, Oliveira Piorelli R, Conde MT, Batista
AP, Zeng G, et al. Double-blind, randomized, placebo-controlled phase
III clinical trial to evaluate the efficacy and safety of treating
healthcare professionals with the adsorbed COVID-19 (inactivated)
vaccine manufactured by Sinovac &#x2013; PROFISCOV: a structured summary
of a study protocol for a randomized controlled trial. Trials
2020;21(1):853.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7558252</ArticleId>
<ArticleId IdType="pubmed">33059771</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sablerolles 2021 {published data only}</Title>
<Reference>
<Citation>Sablerolles RS, Rietdijk WJ, Goorhuis A, Postma DF, Visser LG,
Geers D, et al. Immunogenicity and reactogenicity of booster
vaccinations after Ad26.COV2.S priming. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.10.18.21264979]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.10.18.21264979</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sadoff 2021a {published data only}</Title>
<Reference>
<Citation>Food and Drug Administration. Vaccines and related biological
products Advisory Committee Meeting; February 26, 2021; FDA briefing
document: Janssen Ad26.COV2.S vaccine for the prevention of COVID-19.
www.fda.gov/media/146217/download (accessed prior to 1 November 2022).</Citation>
</Reference>
<Reference>
<Citation>Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, Groot AM,
et al. Interim results of a Phase 1-2a trial of Ad26.COV2.S Covid-19
vaccine. New England Journal of Medicine 2021;384(19):1824-35.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7821985</ArticleId>
<ArticleId IdType="pubmed">33440088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, Groot AM,
et al. Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine
candidate: interim results of a phase 1/2a, double-blind, randomized,
placebo-controlled trial. medRxiv 2020 [Preprint]. [DOI:
10.1101/2020.09.23.20199604]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.09.23.20199604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sadoff 2021b {published data only}</Title>
<Reference>
<Citation>Sadoff J, Gray G, Vandebosch A, C&#xe1;rdenas V, Shukarev G,
Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S
vaccine against Covid-19. New England Journal of Medicine
2021;384(23):2187-201.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8220996</ArticleId>
<ArticleId IdType="pubmed">33882225</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Shinde 2021 {published data only}</Title>
<Reference>
<Citation>Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et
al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351
variant. New England Journal of Medicine 2021;384(20):1899-909.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8091623</ArticleId>
<ArticleId IdType="pubmed">33951374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et
al. Preliminary efficacy of the NVX-CoV2373 Covid-19 vaccine against the
B.1.351 variant. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.02.25.21252477]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.02.25.21252477</ArticleId>
<ArticleId IdType="pmc">PMC8091623</ArticleId>
<ArticleId IdType="pubmed">33951374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Tanriover 2021 {published data only}</Title>
<Reference>
<Citation>Tanriover MD, Do&#x11f;anay HL, Akova M, G&#xfc;ner HR, Azap A,
Akhan S, et al. Efficacy and safety of an inactivated whole-virion
SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind,
randomized, placebo-controlled, phase 3 trial in Turkey. Lancet
2021;398(10296):213-22.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8266301</ArticleId>
<ArticleId IdType="pubmed">34246358</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Thomas 2021 {published data only}</Title>
<Reference>
<Citation>Food and Drug Administration. Vaccines and related biological
products Advisory Committee Meeting; December 10, 2020; FDA briefing
document: Pfizer-BioNTech COVID-19 vaccine.
www.fda.gov/media/144245/download (accessed prior to 1 November 2022).</Citation>
</Reference>
<Reference>
<Citation>Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S,
et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New
England Journal of Medicine 2020;383(27):2603-15.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7745181</ArticleId>
<ArticleId IdType="pubmed">33301246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A,
Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19
vaccine through 6 months. New England Journal of Medicine
2021;385(19):1761-773.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8461570</ArticleId>
<ArticleId IdType="pubmed">34525277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A,
Lockhart S, et al. Six month safety and efficacy of the BNT162b2 mRNA
COVID-19 vaccine. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.07.28.21261159]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.07.28.21261159</ArticleId>
<ArticleId IdType="pmc">PMC8461570</ArticleId>
<ArticleId IdType="pubmed">34525277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Toledo&#x2010;Romani 2021 {published data only}</Title>
<Reference>
<Citation>Toledo-Romani ME, Garcia-Carmenate M, Silva-Valenzuela C,
Baldoquin-Rodriguez W, Mart&#xed;nez-P&#xe9;rez M,
Rodr&#xed;guez-Gonz&#xe1;lez M, et al. Safety and efficacy of the two
doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a
heterologous three-dose combination with SOBERANA-PLUS: double-blind,
randomized, placebo-controlled phase 3 clinical trial. medRxiv 2021
[Preprint]. [DOI: 10.1101/2021.10.31.21265703]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.10.31.21265703</ArticleId>
<ArticleId IdType="pmc">PMC9803910</ArticleId>
<ArticleId IdType="pubmed">36618081</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Voysey 2021a {published data only}</Title>
<Reference>
<Citation>Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S,
Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1
nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2,
single-blind, randomized controlled trial. Lancet
2020;396(10249):467-78. [PMID: ]</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7445431</ArticleId>
<ArticleId IdType="pubmed">32702298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK,
et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222)
against SARS-CoV-2: an interim analysis of four randomized controlled
trials in Brazil, South Africa, and the UK. Lancet
2021;397(10269):99-111. [PMID: ]</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7723445</ArticleId>
<ArticleId IdType="pubmed">33306989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Walsh 2020 {published data only}</Title>
<Reference>
<Citation>Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, et
al. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy
study. medRxiv 2020 [Preprint]. [DOI: 10.1101/2020.08.17.20176651]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.08.17.20176651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman
A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine
candidates. New England Journal of Medicine 2020;383(25):2439-50.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7583697</ArticleId>
<ArticleId IdType="pubmed">33053279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Wu 2021a {published data only}</Title>
<Reference>
<Citation>Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, et al. Safety,
tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine
(CoronaVac) in healthy adults aged 60 years and older: a randomized,
double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet
Infectious Diseases 2021;21(6):803-12.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7906628</ArticleId>
<ArticleId IdType="pubmed">33548194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Xia 2020 {published data only}</Title>
<Reference>
<Citation>Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, et al. Effect of
an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity
outcomes: interim analysis of 2 randomized clinical trials. JAMA
2020;324(10):951-60.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7426884</ArticleId>
<ArticleId IdType="pubmed">32789505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and
immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a
randomized, double-blind, placebo-controlled, phase 1/2 trial. Lancet
Infectious Diseases 2020;21(1):39-51.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7561304</ArticleId>
<ArticleId IdType="pubmed">33069281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Xia 2021 {published data only}</Title>
<Reference>
<Citation>Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and
immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people
younger than 18 years: a randomized, double-blind, controlled, phase 1/2
trial. Lancet Infectious Diseases 2021;22(2):196-208.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8443232</ArticleId>
<ArticleId IdType="pubmed">34536349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zhang 2021 {published data only}</Title>
<Reference>
<Citation>Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety,
tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in
healthy adults aged 18&#x2013;59 years: a randomized, double-blind,
placebo-controlled, phase 1/2 clinical trial. Lancet Infectious Diseases
2021;21(2):181-92.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7832443</ArticleId>
<ArticleId IdType="pubmed">33217362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</ReferenceList>
<ReferenceList>
<Title>References to studies excluded from this review</Title>
<ReferenceList>
<Title>Baden 2021 {published data only}</Title>
<Reference>
<Citation>Baden LR, El Sahly HM, Essink B, Follmann D, Neuzil KM, August A,
et al. Covid-19 in the phase 3 trial of mRNA-1273 during the
Delta-variant surge. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.17.21263624]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.17.21263624</ArticleId>
<ArticleId IdType="pmc">PMC8609569</ArticleId>
<ArticleId IdType="pubmed">34731553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Barrett 2021 {published data only}</Title>
<Reference>
<Citation>Barrett JR, Belij-Rammerstorfer S, Dold C, Ewer KJ, Folegatti PM,
Gilbride C, et al. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19
with a booster dose induces multifunctional antibody responses. Nature
Medicine 2021;27(2):279-88.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33335322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ewer 2021 {published data only}</Title>
<Reference>
<Citation>Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R,
Morter R, et al. T cell and antibody responses induced by a single dose
of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial.
Nature Medicine 2021;27(2):270-8.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33335323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Flaxman 2021 {published data only}</Title>
<Reference>
<Citation>Flaxman A, Marchevsky NG, Jenkin D, Aboagye J, Aley PK, Angus B,
et al. Reactogenicity and immunogenicity after a late second dose or a
third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomized
controlled trials (COV001 and COV002). Lancet 2021;398(10304):981-90.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8409975</ArticleId>
<ArticleId IdType="pubmed">34480858</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Hsieh 2021 {published data only}</Title>
<Reference>
<Citation>Hsieh SM, Liu WD, Huang YS, Lin YJ, Hsieh EF, Lian WC, et al.
Safety and immunogenicity of a recombinant stabilized prefusion
SARS-CoV-2 spike protein vaccine (MVC-COV1901) adjuvanted with CpG 1018
and aluminum hydroxide in healthy adults: a phase 1, dose-escalation
study. eClinicalMedicine 2021;38:100989.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8233066</ArticleId>
<ArticleId IdType="pubmed">34222848</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Irfan 2021 {published data only}</Title>
<Reference>
<Citation>Irfan N, Chagla Z. In South Africa, a 2-dose Oxford/AZ vaccine did
not prevent mild to moderate COVID-19 (cases mainly B.1.351 variant).
Annals of Internal Medicine 2021;174(5):JC50.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33939483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Lazarus 2021 {published data only}</Title>
<Reference>
<Citation>Lazarus R, Baos S, Cappel-Porter H, Carson-Stevens A, Clout M,
Culliford L, et al. The safety and immunogenicity of concomitant
administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal
influenza vaccines in adults: a phase IV, multicentre randomized
controlled trial with blinding (ComFluCOV). SSRN 2021 [Preprint]. [DOI:
10.2139/ssrn.3931758]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2139/ssrn.3931758</ArticleId>
<ArticleId IdType="pmc">PMC8585490</ArticleId>
<ArticleId IdType="pubmed">34774197</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Patamatamkul 2021 {published data only}</Title>
<Reference>
<Citation>Patamatamkul S, Thammawat S, Buranrat B. Induction of robust
neutralizing antibodies against the COVID-19 Delta variant with ChAdOx1
nCoV-19 or BNT162b2 as a booster following a primary vaccination series
with CoronaVac. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.25.21264099]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.25.21264099</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ward 2021a {published data only}</Title>
<Reference>
<Citation>Ward BJ, S&#xe9;guin A, Couillard J, Tr&#xe9;panier S, Landry N.
Phase III: randomized observer-blind trial to evaluate lot-to-lot
consistency of a new plant-derived quadrivalent virus like particle
influenza vaccine in adults 18-49&#xa0;years of age. Vaccine
2021;39(10):1528-33.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33581920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Wu 2021b {published data only}</Title>
<Reference>
<Citation>Wu K, Choi A, Koch M, Ma LZ, Hill A, Nunna N, et al. Preliminary
analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine
booster. medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.05.05.21256716]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.05.05.21256716</ArticleId>
<ArticleId IdType="pmc">PMC8604720</ArticleId>
<ArticleId IdType="pubmed">34526698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zdanowski 2021 {published data only}</Title>
<Reference>
<Citation>Zdanowski W, Wa&#x15b;niewski T. Evaluation of SARS-CoV-2 spike
protein antibody titers in cord blood after COVID-19 vaccination during
pregnancy in Polish healthcare workers: preliminary results. Vaccines
2021;9(6):675.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8234119</ArticleId>
<ArticleId IdType="pubmed">34205434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</ReferenceList>
<ReferenceList>
<Title>Additional references</Title>
<ReferenceList>
<Title>Abbasi 2020</Title>
<Reference>
<Citation>Abbasi J. COVID-19 and mRNA vaccines &#x2013; first large test for
a new approach. JAMA 2020;324(12):1125-7.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32880613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Angkasekwinai 2022</Title>
<Reference>
<Citation>Angkasekwinai N, Sewatanon J, Niyomnaitham S, Phumiamorn S,
Sukapirom K, Sapsutthipas S, et al. Comparison of safety and
immunogenicity of CoronaVac and ChAdOx1 against the SARS-CoV-2
circulating variants of concern (Alpha, Delta, Beta) in Thai healthcare
workers. Vaccine X 2022;10:100153.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8896862</ArticleId>
<ArticleId IdType="pubmed">35282410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Attaway 2021</Title>
<Reference>
<Citation>Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipo&#x11f;lu U.
Severe Covid-19 pneumonia: pathogenesis and clinical management. BMJ
2021;372:n436.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33692022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Baden 2021</Title>
<Reference>
<Citation>Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et
al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England
Journal of Medicine 2021;384(5):403-16.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7787219</ArticleId>
<ArticleId IdType="pubmed">33378609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Balduzzi 2019</Title>
<Reference>
<Citation>Balduzzi S, R&#xfc;cker G, Schwarzer G. How to perform a
meta-analysis with R: a practical tutorial. Evidence-Based Mental Health
2019;22:153-60.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC10231495</ArticleId>
<ArticleId IdType="pubmed">31563865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Borobia 2021</Title>
<Reference>
<Citation>Borobia AM, Carcas AJ, P&#xe9;rez-Olmeda M, Casta&#xf1;o L,
Bertran MJ, Garc&#xed;a-P&#xe9;rez J, et al. Immunogenicity and
reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants
(CombiVacS): a multicentre, open-label, randomised, controlled, phase 2
trial. Lancet 2021;398(10295):121-30.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8233007</ArticleId>
<ArticleId IdType="pubmed">34181880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Boutron 2020a</Title>
<Reference>
<Citation>Boutron I, Chaimani A, Meerpohl JJ, Hr&#xf3;bjartsson A, Devane D,
Rada G, et al. The COVID-NMA Project: building an evidence ecosystem for
the COVID-19 pandemic. Annals of Internal Medicine 2020;173(12):1015-7.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7518109</ArticleId>
<ArticleId IdType="pubmed">32931326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Boutron 2020b</Title>
<Reference>
<Citation>Boutron I, Chaimani A, Meerpohl JJ, Hr&#xf3;bjartsson A, Devane D,
Rada G, et al. Interventions for preventing and treating COVID-19:
protocol for a living mapping of research and a living systematic
review. Cochrane Database of Systematic Reviews 2020, Issue 11. Art. No:
CD013769. [DOI: 10.1002/14651858.CD013769]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/14651858.CD013769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Bucci 2021</Title>
<Reference>
<Citation>Bucci EM, Berkhof J, Gillibert A, Gopalakrishna G, Calogero RA,
Bouter LM, et al. Data discrepancies and substandard reporting of
interim data of Sputnik V phase 3 trial. Lancet 2021;397(10288):1881-3.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC9751705</ArticleId>
<ArticleId IdType="pubmed">33991475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Bueno 2021</Title>
<Reference>
<Citation>Bueno SM, Abarca K, Gonz&#xe1;lez PA, G&#xe1;lvez NM, Soto JA,
Duarte LF, et al. Interim report: safety and immunogenicity of an
inactivated vaccine against SARS-CoV-2 in healthy Chilean adults in a
phase 3 clinical trial. medRxiv 2021 [Preprint].</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Cabanac 2021</Title>
<Reference>
<Citation>Cabanac G, Oikonomidi T, Boutron I. Day-to-day discovery of
preprint-publication links. Scientometrics 2021;126(6):5285-304.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8053368</ArticleId>
<ArticleId IdType="pubmed">33897069</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Castagneto Gissey 2021</Title>
<Reference>
<Citation>Castagneto Gissey L, Panunzi S, Maltese S, Russo MF, Angelini G,
De Gaetano A, et al. Living systematic meta-analysis of COVID-19
vaccines and dose allocation strategies. SSRN &#xa0;2021 [Preprint].
[DOI: 10.2139/ssrn.3827806]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2139/ssrn.3827806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>CDC 2021</Title>
<Reference>
<Citation>Centers for Disease Control and Prevention. Understanding mRNA
COVID-19 vaccines.
www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Chaimani 2013</Title>
<Reference>
<Citation>Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G.
Graphical tools for network meta-analysis in STATA. PLOS One&#xa0;
2013;8&#xa0;(10):e76654.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC3789683</ArticleId>
<ArticleId IdType="pubmed">24098547</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Chaimani 2015</Title>
<Reference>
<Citation>Chaimani A, Salanti G. Visualizing assumptions and results in
network meta-analysis: the Network Graphs Package. Stata Journal
2015;15(4):905-50.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Chaimani 2022</Title>
<Reference>
<Citation>Chaimani A, Caldwell DM, Li T, Higgins JP, Salanti G. Chapter 11:
Undertaking network meta-analyses. In: Higgins JP, Thomas J, Chandler J,
Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for
Systematic Reviews of Interventions Version 6.3 (updated February 2022).
Cochrane, 2022. Available from training.cochrane.org/handbook.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Chappell 2021</Title>
<Reference>
<Citation>Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P,
Lackenby JA, et al. Safety and immunogenicity of an MF59-adjuvanted
spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised,
double-blind, placebo-controlled, phase 1 trial. Lancet Infectious
Diseases 2021;21(10):1383-94.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8055208</ArticleId>
<ArticleId IdType="pubmed">33887208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Che 2021</Title>
<Reference>
<Citation>Che Y, Liu X, Pu Y, Zhou M, Zhao Z, Jiang R, et al. Randomized,
double-blinded, placebo-controlled Phase 2 trial of an inactivated
severe acute respiratory syndrome coronavirus 2 vaccine in healthy
adults. Clinical Infectious Diseases 2021;73(11):e3949-55.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7717222</ArticleId>
<ArticleId IdType="pubmed">33165503</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Chu 2021</Title>
<Reference>
<Citation>Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B, et al.
A preliminary report of a randomized controlled phase 2 trial of the
safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine
2021;39(20):2791-9.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7871769</ArticleId>
<ArticleId IdType="pubmed">33707061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Dal&#x2010;R&#xe9; 2021a</Title>
<Reference>
<Citation>Dal-R&#xe9; R, Bekker LG, Gluud C, Holm S, Jha V, Poland GA, et
al. Ongoing and future COVID-19 vaccine clinical trials: challenges and
opportunities. Lancet Infectious Diseases 2021;21(11):e342-7.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8131060</ArticleId>
<ArticleId IdType="pubmed">34019801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Dal&#x2010;R&#xe9; 2021b</Title>
<Reference>
<Citation>Dal-R&#xe9; R, Orenstein W, Caplan AL. Being fair to participants
in placebo-controlled COVID-19 vaccine trials. Nature Medicine
2021;27(6):938.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33903751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>DeZure 2016</Title>
<Reference>
<Citation>DeZure AD, Berkowitz NM, Graham BS, Ledgerwood JE.
Whole-inactivated and virus-like particle vaccine strategies for
chikungunya virus. Journal of Infectious Diseases 2016;214(Suppl
5):S497-9.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC5137244</ArticleId>
<ArticleId IdType="pubmed">27920180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Dias 2010</Title>
<Reference>
<Citation>Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in
mixed treatment comparison meta-analysis. Statistics in Medicine
2010;29(7-8):932-44.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213715</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Dong 2020</Title>
<Reference>
<Citation>Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic
review of SARS-CoV-2 vaccine candidates. Signal Transduction and
Targeted Therapy 2020;5(1):237.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7551521</ArticleId>
<ArticleId IdType="pubmed">33051445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Egger 1997</Title>
<Reference>
<Citation>Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis
detected by a simple, graphical test. BMJ 1997;315:629-34.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC2127453</ArticleId>
<ArticleId IdType="pubmed">9310563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ella 2020b</Title>
<Reference>
<Citation>Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S, et al.
Safety and immunogenicity clinical trial of an inactivated SARS-CoV-2
vaccine, BBV152 (a phase 2, double-blind, randomised controlled trial)
and the persistence of immune responses from a phase 1 follow-up report.
medRxiv &#xa0;2020 [Preprint]. [DOI: 10.1101/2020.12.21.20248643]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.12.21.20248643</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ella 2021a</Title>
<Reference>
<Citation>Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S, et al.
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152:
interim results from a double-blind, randomized, multicentre, phase 2
trial, and 3-month follow-up of a double-blind, randomized phase 1
trial. Lancet Infectious Diseases 2021;21(7):950-61.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8221739</ArticleId>
<ArticleId IdType="pubmed">33705727</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Enjuanes 2016</Title>
<Reference>
<Citation>Enjuanes L, Zu&#xf1;iga S, Casta&#xf1;o-Rodriguez C,
Gutierrez-Alvarez J, Canton J, Sola I. Molecular basis of coronavirus
virulence and vaccine development. Advances in Virus Research
2016;96:245-86.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7112271</ArticleId>
<ArticleId IdType="pubmed">27712626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Epistemonikos</Title>
<Reference>
<Citation>Epistemonikos. Epistemonikos L&#xb7;OVE COVID-19 platform.
Available at
app.iloveevidence.com/loves/5e6fdb9669c00e4ac072701d?utm=ile.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>FDA 2020a</Title>
<Reference>
<Citation>Food and Drug Administration. Development and licensure of
vaccines to prevent COVID-19. Guidance for industry; June 2020.
www.fda.gov/media/139638/download (accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>FDA 2020b</Title>
<Reference>
<Citation>Food and Drug Administration. FDA Briefing Document Moderna
COVID-19 Vaccine. Vaccines and Related Biological Products Advisory
Committee Meeting December 17, 2020. www.fda.gov/media/144434/download
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>FDA 2020c</Title>
<Reference>
<Citation>Food and Drug Administration. FDA Briefing Document
Pfizer-BioNTech COVID-19 Vaccine. Vaccines and Related Biological
Products Advisory Committee Meeting December 10, 2020.
www.fda.gov/media/144245/download (accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>FDA 2021</Title>
<Reference>
<Citation>Food and Drug Administration. FDA Briefing Document Janssen
Ad26.COV2.S Vaccine for the Prevention of COVID-19. Vaccines and Related
Biological Products Advisory Committee Meeting February 26, 2021.
www.fda.gov/media/146217/download (accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Feikin 2022</Title>
<Reference>
<Citation>Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg
Y, et al. Duration of effectiveness of vaccines against SARS-CoV-2
infection and COVID-19 disease: results of a systematic review and
meta-regression. Lancet 2022;399(10328):924-44.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8863502</ArticleId>
<ArticleId IdType="pubmed">35202601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Feng 2021</Title>
<Reference>
<Citation>Feng Y, Chen J, Yao T, Chang Y, Li X, Xing R, et al. Safety and
Immunogenicity of Inactivated SARS-CoV-2 vaccine in high-risk
occupational population: a randomized, parallel, controlled clinical
trial. medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.08.06.21261696]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.08.06.21261696</ArticleId>
<ArticleId IdType="pmc">PMC8692079</ArticleId>
<ArticleId IdType="pubmed">34933684</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Folegatti 2020</Title>
<Reference>
<Citation>Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S,
Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1
nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2,
single-blind, randomised controlled trial. Lancet 2020;396:467-78.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7445431</ArticleId>
<ArticleId IdType="pubmed">32702298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Formica 2021</Title>
<Reference>
<Citation>Formica N, Mallory R, Albert G, Robinson M, Plested JS, Cho I, et
al, the 2019nCoV-101 Study Group. Evaluation of a SARS-CoV-2 vaccine
NVX-CoV2373 in younger and older adults. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.02.26.21252482]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.02.26.21252482</ArticleId>
<ArticleId IdType="pmc">PMC8486115</ArticleId>
<ArticleId IdType="pubmed">34597298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Fuenmayor 2017</Title>
<Reference>
<Citation>Fuenmayor J, G&#xf2;dia F, Cervera L. Production of virus-like
particles for vaccines. New Biotechnology 2017;39(Pt B):174-80.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7102714</ArticleId>
<ArticleId IdType="pubmed">28778817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Gavi 2020</Title>
<Reference>
<Citation>Gavi. What are viral vector-based vaccines and how could they be
used against COVID-19?
www.gavi.org/vaccineswork/what-are-viral-vector-based-vaccines-and-how-could-they-be-used-against-covid-19
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Gobeil 2021</Title>
<Reference>
<Citation>Gobeil P, Pillet S, S&#xe9;guin A, Boulay I, Mahmood A, Vinh DC,
et al. Interim report of a Phase 2 randomized trial of a plant-produced
virus-like particle vaccine for Covid-19 in healthy adults aged 18-64
and older adults aged 65 and older. medRxiv &#xa0;2021 [Preprint]. [DOI:
10.1101/2021.05.14.21257248]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.05.14.21257248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Goepfert 2021</Title>
<Reference>
<Citation>Goepfert PA, Fu B, Chabanon AL, Bonaparte MI, Davis MG, Essink BJ,
et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein
vaccine formulations in healthy adults: interim results of a randomised,
placebo-controlled, phase 1-2, dose-ranging study. Lancet Infectious
Diseases 2021;21(9):1257-70.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8055206</ArticleId>
<ArticleId IdType="pubmed">33887209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>GRADEpro GDT [Computer program]</Title>
<Reference>
<Citation>GRADEpro GDT. Version accessed 6 December 2021. Hamilton (ON):
McMaster University (developed by Evidence Prime). Available at
gradepro.org.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Guyatt 2011</Title>
<Reference>
<Citation>Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et
al. GRADE guidelines 6. Rating the quality of evidence &#x2013;
imprecision. Journal of Clinical Epidemiology 2011;64(12):1283-93.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21839614</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Harder 2021</Title>
<Reference>
<Citation>Harder T, Koch J, Vygen-Bonnet S, Kulper-Schiek W, Pilic A, Reda
S, et al. Efficacy and effectiveness of COVID-19 vaccines against
SARS-CoV-2 infection: interim results of a living systematic review, 1
January to 14 May 2021. Eurosurveillance 2021;26(28):2100563.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8284046</ArticleId>
<ArticleId IdType="pubmed">34269175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Hayawi 2021</Title>
<Reference>
<Citation>Hayawi K, Shahriar S, Serhani MA, Alashwal H, Masud MM. Vaccine
versus variants (3Vs): are the COVID-19 vaccines effective against the
variants? A systematic review. Vaccines 2021;9(11):1305.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8622454</ArticleId>
<ArticleId IdType="pubmed">34835238</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Heath 2021&#xa0;</Title>
<Reference>
<Citation>Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et
al. Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.1.1.7
variant. medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.05.13.21256639]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.05.13.21256639</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Higdon 2021</Title>
<Reference>
<Citation>Higdon MM, Wahl B, Jones CB, Rosen JG, Truelove SA, Baidya A, et
al. A systematic review of COVID-19 vaccine efficacy and effectiveness
against SARS-CoV-2 infection and disease. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.17.21263549]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.17.21263549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Higgins 2021</Title>
<Reference>
<Citation>Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch
VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions
Version 6.2 (updated February 2021). Cochrane, 2021. Available from
training.cochrane.org/handbook/archive/v6.2.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Hobernik 2018</Title>
<Reference>
<Citation>Hobernik D, Bros M. DNA vaccines &#x2013; how far from clinical
use? International Journal of Molecular Sciences 2018;19(11):3605.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC6274812</ArticleId>
<ArticleId IdType="pubmed">30445702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Hultcrantz 2017</Title>
<Reference>
<Citation>Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, et
al. The GRADE Working Group clarifies the construct of certainty of
evidence. Journal of Clinical Epidemiology 2017;87:4-13.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC6542664</ArticleId>
<ArticleId IdType="pubmed">28529184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Kirkham 2018</Title>
<Reference>
<Citation>Kirkham JJ, Altman DG, Chan AW, Gamble C, Dwan KM, Williamson PR.
Outcome reporting bias in trials: a methodological approach for
assessment and adjustment in systematic reviews. BMJ 2018;362:k3802.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC6161807</ArticleId>
<ArticleId IdType="pubmed">30266736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Korang 2022</Title>
<Reference>
<Citation>Korang SK, Rohden E, Veroniki AA, Ong G, Ngalamika O, Siddiqui F,
et al. Vaccines to prevent COVID-19: a living systematic review with
trial sequential analysis and network meta-analysis of randomized
clinical trials. PLOS One 2022;17(1):e0260733.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8782520</ArticleId>
<ArticleId IdType="pubmed">35061702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Kow 2022</Title>
<Reference>
<Citation>Kow CS, Ramachandram DS, Hasan SS. The effectiveness of mRNA-1273
vaccine against COVID-19 caused by Delta variant: a systematic review
and meta-analysis. Journal of Medical Virology 2022;94(5):2269-74.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC9015635</ArticleId>
<ArticleId IdType="pubmed">34978339</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Lazarus 2021</Title>
<Reference>
<Citation>Lazarus R, Taucher C, Brown C, &#x10c;orbic I, Danon L, Dubischar
K, et al. Immunogenicity and safety of inactivated whole virion
Coronavirus vaccine with CpG (VLA2001) in healthy adults aged 18 to 55:
a randomised phase 1 /2 clinical trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.08.13.21262021]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.08.13.21262021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Li 2021b</Title>
<Reference>
<Citation>Li J, Hui A, Zhang X, Yang Y, Tang R, Ye H, et al. Safety and
immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and
older Chinese adults: a randomized, placebo-controlled, double-blind
phase 1 study. Nature Medicine 2021;27(6):1062-70.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33888900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Li 2021c</Title>
<Reference>
<Citation>Li M, Yang J, Wang L, Wu Q, Wu Z, Zheng W, et al. A booster dose
is immunogenic and will be needed for older adults who have completed
two doses vaccination with CoronaVac: a randomized, double-blind,
placebo-controlled, phase 1/2 clinical trial. medRxiv 2021 [Preprint].
[DOI: 10.1101/2021.08.03.21261544]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.08.03.21261544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Liu 2021</Title>
<Reference>
<Citation>Liu X, Shaw RH, Stuart AS, Greenland M, Dinesh T,
Provstgaard-Morys S, et al. Safety and immunogenicity report from the
com-COV study &#x2013; a single-blind randomised non-inferiority trial
comparing heterologous and homologous prime-boost schedules with an
adenoviral vectored and mRNA COVID-19 vaccine. SSRN 2021 [Preprint].</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8346248</ArticleId>
<ArticleId IdType="pubmed">34370971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Low 2021</Title>
<Reference>
<Citation>Low JG, Alwis R, Chen S, Kalimuddin S, Leong YA, Mah TK, et al. A
phase 1/2 randomized, double-blinded, placebo controlled ascending dose
trial to assess the safety, tolerability and immunogenicity of ARCT-021
in healthy adults. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.07.01.21259831]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.07.01.21259831</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Lv 2021</Title>
<Reference>
<Citation>Lv M, Luo X, Shen Q, Lei R, Liu X, Liu E, et al. Safety,
immunogenicity, and efficacy of COVID-19 vaccines in children and
adolescents: a systematic review. Vaccines 2021;9(10):1102.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8539812</ArticleId>
<ArticleId IdType="pubmed">34696210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Madhi 2021</Title>
<Reference>
<Citation>Madhi SA, Koen AL, Fairlie L, Cutland CL, Baillie V, Padayachee
SD, et al. ChAdOx1 nCoV-19 (AZD1222) vaccine in people living with and
without HIV. Research Square 2021 [Preprint]. [DOI:
10.21203/rs.3.rs-322470/v1]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.21203/rs.3.rs-322470/v1</ArticleId>
<ArticleId IdType="pmc">PMC8372504</ArticleId>
<ArticleId IdType="pubmed">34416193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Makris 2021</Title>
<Reference>
<Citation>Makris M, Pavord S, Lester W, Scully M, Hunt B. Vaccine-induced
immune thrombocytopenia and thrombosis (VITT). Research and Practice in
Thrombosis and Haemostasis 2021;5(5):e12529.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8178610</ArticleId>
<ArticleId IdType="pubmed">34136745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Mammen 2021</Title>
<Reference>
<Citation>Mammen MP Jr, Tebas P, Agnes J, Giffear M, Kraynyak KA, Blackwood
E, et al. Safety and immunogenicity of INO-4800 DNA vaccine against
SARS-CoV-2: a preliminary report of a randomized, blinded,
placebo-controlled, Phase 2 clinical trial in adults at high risk of
viral exposure. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.05.07.21256652]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.05.07.21256652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Marshall 2020</Title>
<Reference>
<Citation>Marshall JC, Murthy S, Diaz J, Adhikari NK, Angus DC, Arabi YM, et
al. A minimal common outcome measure set for COVID-19 clinical research.
Lancet Infectious Diseases 2020;20(8):e192-7.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7292605</ArticleId>
<ArticleId IdType="pubmed">32539990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Mavridis 2014</Title>
<Reference>
<Citation>Mavridis D, Welton NJ, Sutton A, Salanti G. A selection model for
accounting for publication bias in a full network meta-analysis.
Statistics in Medicine 2014;33(30):5399-412.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25316006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Meng 2021b</Title>
<Reference>
<Citation>Meng FY, Gao F, Jia SY, Wu XH, Li JX, Guo XL, et al. Safety and
immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy
population aged 18 years or older: two single-center, randomised,
double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal
Transduction and Targeted Therapy 2021;6(1):271.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8281021</ArticleId>
<ArticleId IdType="pubmed">34267185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Mortola 2004</Title>
<Reference>
<Citation>Mortola E, Roy P. Efficient assembly and release of SARS
coronavirus-like particles by a heterologous expression system. FEBS
Letters 2004;576(1-2):174-8.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7126153</ArticleId>
<ArticleId IdType="pubmed">15474033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Mulligan 2020</Title>
<Reference>
<Citation>Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S,
et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults.
Nature 2020;586(7830):589-93.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32785213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Nguyen 2021</Title>
<Reference>
<Citation>Nguyen TP, Do Q, Phan LT, Dinh DV, Khong H, Hoang LV, et al.
Safety and immunogenicity of Nanocovax, a SARS-CoV-2 recombinant spike
protein vaccine. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.07.22.21260942]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.07.22.21260942</ArticleId>
<ArticleId IdType="pmc">PMC9108376</ArticleId>
<ArticleId IdType="pubmed">35602004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Nikolakopoulou 2020</Title>
<Reference>
<Citation>Nikolakopoulou A, Higgins JP, Papakonstantinou T, Chaimani A, Del
Giovane C, Egger M, et al. CINeMA: an approach for assessing confidence
in the results of a network meta-analysis. PLOS Medicine
2020;17&#xa0;(4):e1003082.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7122720</ArticleId>
<ArticleId IdType="pubmed">32243458</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Oikonomidi 2020</Title>
<Reference>
<Citation>Oikonomidi T, Boutron I, Pierre O, Cabanac G, Ravaud P, COVID-19
NMA Consortium. Changes in evidence for studies assessing interventions
for COVID-19 reported in preprints: meta-research study. BMC Medicine
2020;18(1):402.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7745199</ArticleId>
<ArticleId IdType="pubmed">33334338</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ostrowski 2021</Title>
<Reference>
<Citation>Ostrowski SR, S&#xf8;gaard OS, Tolstrup M, St&#xe6;rke NB,
Lundgren J, &#xd8;stergaard L, et al. Inflammation and platelet
activation after COVID-19 vaccines &#x2013; possible mechanisms behind
vaccine-induced immune thrombocytopenia and thrombosis. Frontiers in
Immunology 2021;12:779453.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8649717</ArticleId>
<ArticleId IdType="pubmed">34887867</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ouzzani 2016</Title>
<Reference>
<Citation>Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyanv &#x2013;
a web and mobile app for systematic reviews. Systematic Reviews
2016;5(1):210.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC5139140</ArticleId>
<ArticleId IdType="pubmed">27919275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Oxford Vaccine Group 2020</Title>
<Reference>
<Citation>Oxford Vaccine Group. Vaccine Knowledge Project: independent
information about vaccines and infectious diseases. vk.ovg.ox.ac.uk/vk
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Page 2021</Title>
<Reference>
<Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow
CD, et al. The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews. BMJ 2021;372:n71.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8005924</ArticleId>
<ArticleId IdType="pubmed">33782057</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pajon 2021</Title>
<Reference>
<Citation>Pajon R, Paila YD, Girard B, Dixon G, Kacena K, Baden LR, et al.
Initial analysis of viral dynamics and circulating viral variants during
the mRNA-1273 Phase 3 COVE trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.28.21264252]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.28.21264252</ArticleId>
<ArticleId IdType="pmc">PMC9018421</ArticleId>
<ArticleId IdType="pubmed">35145311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pan 2021a</Title>
<Reference>
<Citation>Pan HX, Liu JK, Huang BY, Li GF, Chang XY, Liu YF, et al.
Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine (KCONVAC)
in healthy adults: two randomized, double-blind, and placebo-controlled
Phase 1/2 clinical trials. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.04.07.21253850]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.04.07.21253850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pan 2021b</Title>
<Reference>
<Citation>Pan HX, Wu QH, Zeng G, Yang J, Jiang DY, Deng XW, &#xa0;et al.
Immunogenicity and safety of a third dose, and immune persistence of
CoronaVac vaccine in healthy adults aged 18&#x2013;59 years: interim
results from a double-blind, randomized, placebo-controlled phase 2
clinical trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.07.23.21261026]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.07.23.21261026</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>P&#xe9;rez&#x2010;Rodr&#xed;guez 2021</Title>
<Reference>
<Citation>P&#xe9;rez-Rodr&#xed;guez S, la Caridad
Rodr&#xed;guez-Gonz&#xe1;lez M, Ochoa-Azze R, Climent-Ruiz Y, Alberto
Gonz&#xe1;lez-Delgado C, Paredes-Moreno B, et al. A randomized,
double-blind phase I clinical trial of two recombinant dimeric RBD
COVID-19 vaccine candidates: safety, reactogenicity and immunogenicity.
medRxiv 2021 [Preprint]. [DOI: 10.1101/2021.10.04.21264522]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.10.04.21264522</ArticleId>
<ArticleId IdType="pmc">PMC8823954</ArticleId>
<ArticleId IdType="pubmed">35164986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pitisuttithum 2021</Title>
<Reference>
<Citation>Pitisuttithum P, Luvira V, Lawpoolsri S, Muangnoicharoen S,
Kamolratanakul S, Sivakorn C, et al. Safety and immunogenicity of an
inactivated recombinant Newcastle disease virus vaccine expressing
SARS-CoV-2 spike: interim results of a randomised, placebo-controlled,
Phase 1/2 trial. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.17.21263758]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.17.21263758</ArticleId>
<ArticleId IdType="pmc">PMC8903824</ArticleId>
<ArticleId IdType="pubmed">35284808</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Polack 2020</Title>
<Reference>
<Citation>Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S,
et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New
England Journal of Medicine 2020;383(27):2603-15.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7745181</ArticleId>
<ArticleId IdType="pubmed">33301246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pollard 2021</Title>
<Reference>
<Citation>Pollard AJ, Bijker EM. A guide to vaccinology: from basic
principles to new developments. Nature Reviews Immunology
2021;21(2):83-100.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7754704</ArticleId>
<ArticleId IdType="pubmed">33353987</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Pu 2021</Title>
<Reference>
<Citation>Pu J, Yu Q, Yin Z, Zhang Y, Li X, Yin Q, et al. The safety and
immunogenicity of an inactivated SARS-CoV-2 vaccine in Chinese adults
aged 18&#x2013;59 years: a phase I randomized, double-blinded,
controlled trial. Vaccine 2021;39(20):2746-54.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8040531</ArticleId>
<ArticleId IdType="pubmed">33875266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Qiao 2020</Title>
<Reference>
<Citation>Qiao J. What are the risks of COVID-19 infection in pregnant
women? Lancet 2020;395(10226):760-2.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7158939</ArticleId>
<ArticleId IdType="pubmed">32151334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ramasamy 2020</Title>
<Reference>
<Citation>Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM,
Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine
administered in a prime-boost regimen in young and old adults (COV002):
a single-blind, randomized, controlled, phase 2/3 trial. Lancet
2020;396(10267):1979-93.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7674972</ArticleId>
<ArticleId IdType="pubmed">33220855</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Richmond 2021</Title>
<Reference>
<Citation>Richmond P, Hatchuel L, Dong M, Ma B, Hu B, Smolenov I, et al.
Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit
vaccine candidate for COVID-19 in healthy adults: a phase 1, randomized,
double-blind, placebo-controlled trial. Lancet 2021;397(10275):682-94.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7906655</ArticleId>
<ArticleId IdType="pubmed">33524311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Riley 2011</Title>
<Reference>
<Citation>Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects
meta-analyses. BMJ 2011;342:d549.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Rizk 2021</Title>
<Reference>
<Citation>Rizk JG, Gupta A, Sardar P, Henry BM, Lewin JC, Lippi G, et al.
Clinical characteristics and pharmacological management of COVID-19
vaccine-induced immune thrombotic thrombocytopenia with cerebral venous
sinus thrombosis: a review. JAMA Cardiology 2021;6(12):1451-60.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34374713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Roozen 2021</Title>
<Reference>
<Citation>Roozen GV, Prins ML, Binnendijk R, den Hartog G, Kuiper VP, Prins
C, et al. Tolerability, safety and immunogenicity of intradermal
delivery of a fractional dose mRNA-1273 SARS-CoV-2 vaccine in healthy
adults as a dose sparing strategy. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.07.27.21261116]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.07.27.21261116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Roper 2009</Title>
<Reference>
<Citation>Roper RL, Rehm KE. SARS vaccines: where are we? Expert Review of
Vaccines 2009;8(7):887-98.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7105754</ArticleId>
<ArticleId IdType="pubmed">19538115</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Rotshild 2021</Title>
<Reference>
<Citation>Rotshild V, Hirsh-Raccah B, Miskin I, Muszkat M, Matok I.
Comparing the clinical efficacy of COVID-19 vaccines: a systematic
review and network meta-analysis. Scientific Reports 2021;11(1):22777.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8611039</ArticleId>
<ArticleId IdType="pubmed">34815503</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Rubin 2013</Title>
<Reference>
<Citation>Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et
al. 2013 IDSA clinical practice guideline for vaccination of the
immunocompromized host. Clinical Infectious Diseases
2013;58(3):e44-e100.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311479</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Rucker 2013</Title>
<Reference>
<Citation>Rucker G, Schwarzer G, R&#xfc;cker G, Schwarzer G, Krahn U,
K&#xf6;nig J. Network meta-analysis using frequentist methods &#x2013;
package netmeta. cran.r&#x2013;project.org (accessed prior to 1 November
2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ryzhikov 2021</Title>
<Reference>
<Citation>Ryzhikov AB, Ryzhikov &#x415;&#x410;, Bogryantseva MP, Usova SV,
Danilenko ED, Nechaeva EA, et al. A single blind, placebo-controlled
randomized study of the safety, reactogenicity and immunogenicity of the
"EpiVacCorona" vaccine for the prevention of COVID-19. Russian Journal
of Infection and Immunity 2021;11(2):283-96.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sadoff 2020c</Title>
<Reference>
<Citation>Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, Groot AM,
et al. Safety and immunogenicity of the Ad26. COV2. S COVID-19 vaccine
candidate: interim results of a phase 1/2a, double-blind, randomized,
placebo-controlled trial. MedRxiv 2020 [Preprint].</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Salanti 2011</Title>
<Reference>
<Citation>Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical
summaries for presenting results from multiple-treatment meta-analysis:
an overview and tutorial. Journal of Clinical Epidemiology
2011;64(2):163-7.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20688472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sch&#xfc;nemann 2021</Title>
<Reference>
<Citation>Sch&#xfc;nemann HJ, Higgins JP, Vist GE, Glasziou P, Akl EA,
Skoetz N, et al. Chapter 14: Completing 'Summary of findings' tables and
grading the certainty of the evidence. In: Higgins JP, Thomas J,
Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane
Handbook for Systematic Reviews of Interventions Version 6.2 (updated
February 2021). Cochrane, 2021. Available from
training.cochrane.org/handbook/archive/v6.2.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sharifian&#x2010;Dorche 2021</Title>
<Reference>
<Citation>Sharifian-Dorche M, Bahmanyar M, Sharifian-Dorche A, Mohammadi P,
Nomovi M, Mowla A. Vaccine-induced immune thrombotic thrombocytopenia
and cerebral venous sinus thrombosis post COVID-19 vaccination; a
systematic review. Journal of the Neurological Sciences 2021;428:117607.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8330139</ArticleId>
<ArticleId IdType="pubmed">34365148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Shinde 2021</Title>
<Reference>
<Citation>Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et
al, for the 2019nCoV-501 Study Group. Preliminary efficacy of the
NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. medRxiv 2021
[Preprint].</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8091623</ArticleId>
<ArticleId IdType="pubmed">33951374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Shu 2021</Title>
<Reference>
<Citation>Shu YJ, He JF, Pei RJ, He P, Huang ZH, Chen SM, et al.
Immunogenicity and safety of a recombinant fusion protein vaccine (V-01)
against coronavirus disease 2019 in healthy adults: a randomized,
double-blind, placebo-controlled, phase II trial. Chinese Medical
Journal 2021;134(16):1967-76.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8382383</ArticleId>
<ArticleId IdType="pubmed">34310400</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sridhar 2021</Title>
<Reference>
<Citation>Sridhar S, Joaquin A, Bonaparte MI, Bueso A, Chabanon AL, Chen A,
et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein
vaccine with AS03 adjuvant in healthy adults: interim findings from a
phase 2, randomised, dose-finding, multi-centre study. medRxiv 2021
[Preprint]. [DOI: 10.1101/2021.10.08.21264302]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.10.08.21264302</ArticleId>
<ArticleId IdType="pmc">PMC8789245</ArticleId>
<ArticleId IdType="pubmed">35090638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Stephenson 2021</Title>
<Reference>
<Citation>Stephenson KE, Le Gars M, Sadoff J, Groot AM, Heerwegh D, Truyers
C, et al. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA
2021;325(15):1535-44.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7953339</ArticleId>
<ArticleId IdType="pubmed">33704352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Sterne 2019</Title>
<Reference>
<Citation>Sterne JA, Savovi&#x107; J, Page MJ, Elbers RG, Blencowe NS,
Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in
randomized trials. BMJ 2019;366:l4898.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31462531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Thomas 2021</Title>
<Reference>
<Citation>Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart
S, et al. Six month safety and efficacy of the BNT162b2 Mrna Covid-19
vaccine. medRxiv 2021 [Preprint].</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8461570</ArticleId>
<ArticleId IdType="pubmed">34525277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Turner 2012</Title>
<Reference>
<Citation>Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting
the extent of heterogeneity in meta-analysis, using empirical data from
the Cochrane Database of Systematic Reviews. International Journal of
Epidemiology 2012;41(3):818-27.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC3396310</ArticleId>
<ArticleId IdType="pubmed">22461129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>van Riel 2020</Title>
<Reference>
<Citation>Riel D, Wit E. Next-generation vaccine platforms for COVID-19.
Nature Materials 2020;19(8):810-2.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32704139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Viechtbauer 2010</Title>
<Reference>
<Citation>Viechtbauer W. Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software 2010;36(3):1-48.</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Voysey 2021b</Title>
<Reference>
<Citation>Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley
PK, et al. Single-dose administration and the influence of the timing of
the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19
(AZD1222) vaccine: a pooled analysis of four randomized trials. Lancet
2021;397(10277):881-91.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7894131</ArticleId>
<ArticleId IdType="pubmed">33617777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Walsh 2021</Title>
<Reference>
<Citation>Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, et
al. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy
study. medRxiv 2021 [Preprint].</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Ward 2021b</Title>
<Reference>
<Citation>Ward BJ, Gobeil P, S&#xe9;guin A, Atkins J, Boulay I, Charbonneau
PY, et al. Phase 1 randomized trial of a plant-derived virus-like
particle vaccine for COVID-19. Nature Medicine 2021;27(6):1071-8.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8205852</ArticleId>
<ArticleId IdType="pubmed">34007070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>White 2008</Title>
<Reference>
<Citation>White IR, Higgins JP, Wood AM. Allowing for uncertainty due to
missing data in meta-analysis &#x2013; part 1: two-stage methods.
Statistics in Medicine 2008;27(5):711-27.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17703496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO 2020a</Title>
<Reference>
<Citation>World Health Organization. Coronavirus disease 2019 (COVID-19).
Situation report &#x2013; 51. apps.who.int/iris/handle/10665/331475
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO 2020b</Title>
<Reference>
<Citation>World Health Organization. Considerations for evaluation of
COVID19 vaccines. Points to consider for manufacturers of COVID-19
vaccines. Version 24 September 2020.
www.who.int/docs/default-source/in-vitro-diagnostics/covid19/who-evaluation-covid-vaccine-w-lines.pdf?sfvrsn=701d3a65_2
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO 2020c</Title>
<Reference>
<Citation>World Health Organization. WHO target product profiles for
COVID-19 vaccines. Version 3 &#x2013; 29 April 2020.
www.who.int/docs/default-source/blue-print/who-target-product-profiles-for-covid-19-vaccines.pdf
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO 2022a</Title>
<Reference>
<Citation>World Health Organization. Tracking SARS-CoV-2 variants.
www.who.int/activities/tracking-SARS-CoV-2-variants (accessed prior to 1
November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO 2022b</Title>
<Reference>
<Citation>World Health Organization. COVID-19 vaccine tracker and landscape.
www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
(accessed prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>WHO Ad Hoc Expert Group 2021</Title>
<Reference>
<Citation>WHO Ad Hoc Expert Group on the Next Steps for Covid-19 Vaccine
Evaluation. Placebo-controlled trials of covid-19 vaccines &#x2013; why
we still need them. New England Journal of Medicine 2021;384:e2. [DOI:
10.1056/NEJMp2033538]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMp2033538</ArticleId>
<ArticleId IdType="pubmed">33264543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Worldometer 2022</Title>
<Reference>
<Citation>Worldometer. COVID-19 coronavirus pandemic.
www.worldometers.info/coronavirus/#countries (accessed prior to 1
November 2022).</Citation>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Wu 2021c</Title>
<Reference>
<Citation>Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, et al. Safety,
tolerability, and immunogenicity of an aerosolised adenovirus type-5
vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report
of an open-label and randomised phase 1 clinical trial. Lancet
Infectious Diseases 2021;21(12):1654-64.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8313090</ArticleId>
<ArticleId IdType="pubmed">34324836</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Xia 2020</Title>
<Reference>
<Citation>Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, et al. Effect of
an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity
outcomes: interim analysis of 2 randomized clinical trials. JAMA
2020;324(10):951-60.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7426884</ArticleId>
<ArticleId IdType="pubmed">32789505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Yang 2021</Title>
<Reference>
<Citation>Yang S, Li Y, Dai L, Wang J, He P, Li C, et al. Safety and
immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein
subunit vaccine (ZF2001) against COVID-19 in adults: two randomized,
double-blind, placebo-controlled, phase 1 and 2 trials. Lancet
Infectious Diseases 2021;21(8):1107-19.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7990482</ArticleId>
<ArticleId IdType="pubmed">33773111</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Yepes&#x2010;Nu&#xf1;ez 2019</Title>
<Reference>
<Citation>Yepes-Nu&#xf1;ez JJ, Li SA, Guyatt G, Jack SM, Brozek JL, Beyene
J, et al. Development of the summary of findings table for network
meta-analysis. Journal of Clinical Epidemiology 2019;115:1-13.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31055177</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zakarya 2021</Title>
<Reference>
<Citation>Zakarya K, Kutumbetov L, Orynbayev M, Abduraimov Y, Sultankulova
K, Kassenov M, et al. A single-centre, randomized, single-blind,
placebo-controlled phase 1 and an open-label phase 2 clinical trials
with a 6 months follow-up in Kazakhstan. EClinicalMedicine
2021;39:101078.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8363482</ArticleId>
<ArticleId IdType="pubmed">34414368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zeng 2021a</Title>
<Reference>
<Citation>Zeng L, Brignardello-Petersen R, Hultcrantz M, Siemieniuk RA,
Santesso N, Traversy G, et al. GRADE guidelines 32: GRADE offers
guidance on choosing targets of GRADE certainty of evidence ratings.
Journal of Clinical Epidemiology 2021;137:163-75.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33857619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zeng 2021b</Title>
<Reference>
<Citation>Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19
vaccines against SARS-CoV-2 variants of concern: a systematic review and
meta-analysis. medRxiv 2021 [Preprint]. [DOI:
10.1101/2021.09.23.21264048]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2021.09.23.21264048</ArticleId>
<ArticleId IdType="pmc">PMC9126103</ArticleId>
<ArticleId IdType="pubmed">35606843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zhang 2021b</Title>
<Reference>
<Citation>Zhang J, Hu Z, He J, Liao Y, Li Y, Pei R, et al. Safety and
immunogenicity of a recombinant interferon-armed RBD dimer vaccine
(V-01) for COVID-19 in healthy adults: a randomized, double-blind,
placebo-controlled, Phase I trial. Emerging Microbes &amp; Infections
2021;10(1):1589-97.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8366678</ArticleId>
<ArticleId IdType="pubmed">34197281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zhu 2020</Title>
<Reference>
<Citation>Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al.
Immunogenicity and safety of a recombinant adenovirus type-5-vectored
COVID-19 vaccine in healthy adults aged 18 years or older: a randomized,
double-blind, placebo-controlled, phase 2 trial. Lancet
2020;396(10249):479-88.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC7836858</ArticleId>
<ArticleId IdType="pubmed">32702299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zhu 2021a</Title>
<Reference>
<Citation>Zhu F, Jin P, Zhu T, Wang W, Ye H, Pan H, et al. Safety and
immunogenicity of a recombinant adenovirus type-5-vectored COVID-19
vaccine with a homologous prime-boost regimen in healthy participants
aged 6 years and above: a randomized, double-blind, placebo-controlled,
phase 2b trial. Clinical Infectious Diseases 2022;75(1):e783-91. [DOI:
10.1093/cid/ciab845]</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cid/ciab845</ArticleId>
<ArticleId IdType="pmc">PMC8522421</ArticleId>
<ArticleId IdType="pubmed">34551104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Title>Zhu 2022</Title>
<Reference>
<Citation>Zhu F, Jin P, Zhu T, Wang W, Ye H, Pan H, et al. Safety and
immunogenicity of a recombinant adenovirus type-5-vectored COVID-19
vaccine with a homologous prime-boost regimen in healthy participants
aged 6 years and above: a randomized, double-blind, placebo-controlled,
phase 2b trial. Clinical Infectious Diseases 2022;75(1):e783-91.</Citation>
<ArticleIdList>
<ArticleId IdType="pmc">PMC8522421</ArticleId>
<ArticleId IdType="pubmed">34551104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</ReferenceList>
<ReferenceList>
<Title>References to other published versions of this review</Title>
<ReferenceList>
<Title>Grana 2021</Title>
<Reference>
<Citation>Grana C, Ghosn L, Boutron I. Efficacy and safety of COVID-19
vaccines: a systematic review and meta-analysis. PROSPERO 2021
CRD42021271897.
www.crd.york.ac.uk/prospero/display_record.php?RecordID=271897 (accessed
prior to 1 November 2022).</Citation>
</Reference>
</ReferenceList>
</ReferenceList>
</PubmedData>
</PubmedArticle>
</PubmedArticleSet>