File size: 17,900 Bytes
3647b28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1fee6
 
 
 
 
 
 
 
 
 
 
 
0b78609
 
 
 
cf1fee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da9dd79
cf1fee6
 
 
 
 
 
 
a4c77d9
 
cf1fee6
a4c77d9
 
cf1fee6
f82b999
cf1fee6
 
 
 
 
 
 
b30ada3
cf1fee6
b30ada3
dfac116
 
 
b30ada3
cf1fee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931dd12
917c404
cf1fee6
 
917c404
cf1fee6
 
 
 
21b887c
cf1fee6
 
 
 
 
 
cde5754
cf1fee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3647b28
 
 
 
cf1fee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3647b28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# import streamlit as st
# from dotenv import load_dotenv
# from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
# from langchain.vectorstores import FAISS
# from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import LlamaCpp
# import json
# from pathlib import Path
# from pprint import pprint

# from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
# import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
# import os
# from huggingface_hub import hf_hub_download # Hugging Face Hubμ—μ„œ λͺ¨λΈμ„ λ‹€μš΄λ‘œλ“œν•˜κΈ° μœ„ν•œ ν•¨μˆ˜μž…λ‹ˆλ‹€.

# # PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
# def get_pdf_text(pdf_docs):
#     temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
#         f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
#     pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
#     pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
#     return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

# # 과제
# # μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±

# def get_text_file(text_docs):
#     temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     temp_filepath = os.path.join(temp_dir.name, text_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

#     with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ ν…μŠ€νŠΈ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
#         f.write(text_docs.getvalue())  # ν…μŠ€νŠΈ λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

#     text_loader = TextLoader(temp_filepath)  # TextLoaderλ₯Ό μ‚¬μš©ν•΄ ν…μŠ€νŠΈ λ¬Έμ„œλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
#     text_doc = text_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
#     return text_doc  # μΆ”μΆœλœ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

# def get_csv_file(csv_docs):
#     temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     temp_filepath = os.path.join(temp_dir.name, csv_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

#     with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
#         f.write(csv_docs.getvalue())  # CSV λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

#     csv_loader = CSVLoader(temp_filepath)  # CSVLoaderλ₯Ό μ‚¬μš©ν•΄ CSV λ¬Έμ„œλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
#     csv_doc = csv_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
#     return csv_doc  # μΆ”μΆœλœ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

# def get_json_file(json_docs):
#     temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     temp_filepath = os.path.join(temp_dir.name, json_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

#     with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ ν…μŠ€νŠΈ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
#         f.write(json_docs.getvalue())  # JSON λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

#     json_loader = JSONLoader(temp_filepath)  # JSONLoaderλ₯Ό μ‚¬μš©ν•΄ JSON λ¬Έμ„œλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
#     json_doc = json_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
#     return json_doc  # μΆ”μΆœλœ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.




# # def get_text_file(text_docs):
# #
# #     pass
# #
# # def get_csv_file(csv_docs):
# #     pass
# #
# # def get_json_file(json_docs):
# #
# #
# #     pass

    
# # λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
# def get_text_chunks(documents):
#     text_splitter = RecursiveCharacterTextSplitter(
#         chunk_size=1000,  # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
#         chunk_overlap=200,  # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
#         length_function=len  # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
#     )

#     documents = text_splitter.split_documents(documents)  # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€.
#     return documents  # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


# # ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
# def get_vectorstore(text_chunks):
#     # μ›ν•˜λŠ” μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€.
#     embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
#                                        model_kwargs={'device': 'cpu'})  # μž„λ² λ”© λͺ¨λΈμ„ μ„€μ •ν•©λ‹ˆλ‹€.
#     vectorstore = FAISS.from_documents(text_chunks, embeddings)  # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     return vectorstore  # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


# def get_conversation_chain(vectorstore):
#     model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
#     model_basename = 'llama-2-7b-chat.Q2_K.gguf'
#     model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)

#     llm = LlamaCpp(model_path=model_path,
#                    n_ctx=8192,
#                    input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
#                    verbose=True, )
#     # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
#     memory = ConversationBufferMemory(
#         memory_key='chat_history', return_messages=True)
#     # λŒ€ν™” 검색 체인을 μƒμ„±ν•©λ‹ˆλ‹€.
#     conversation_chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=vectorstore.as_retriever(),
#         memory=memory
#     )
#     return conversation_chain # μƒμ„±λœ λŒ€ν™” 체인을 λ°˜ν™˜ν•©λ‹ˆλ‹€.

# # μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
# def handle_userinput(user_question):
#     print('user_question =>  ', user_question)
#     # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
#     response = st.session_state.conversation({'question': user_question})
#     # λŒ€ν™” 기둝을 μ €μž₯ν•©λ‹ˆλ‹€.
#     st.session_state.chat_history = response['chat_history']

#     for i, message in enumerate(st.session_state.chat_history):
#         if i % 2 == 0:
#             st.write(user_template.replace(
#                 "{{MSG}}", message.content), unsafe_allow_html=True)
#         else:
#             st.write(bot_template.replace(
#                 "{{MSG}}", message.content), unsafe_allow_html=True)
# text_chunks = []
# def initialize_conversation_chain():
#     # Add the necessary code to initialize the conversation_chain
#     # This may include loading the LlamaCpp model and creating the conversation_chain
#     vectorstore = get_vectorstore(text_chunks)  # Replace this with the appropriate code
#     return get_conversation_chain(vectorstore)


# def main():
#     load_dotenv()
#     st.set_page_config(page_title="Chat with multiple Files",
#                        page_icon=":books:")
#     st.write(css, unsafe_allow_html=True)

#     # λŒ€ν™” 체인이 μ„Έμ…˜ μƒνƒœμ— μ—†κ±°λ‚˜ None인 경우 μ΄ˆκΈ°ν™”ν•©λ‹ˆλ‹€.
#     if "conversation" not in st.session_state or st.session_state.conversation is None:
#         # μ μ ˆν•œ λ°μ΄ν„°λ‘œ text_chunksλ₯Ό μ •μ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€.
#         st.session_state.conversation = initialize_conversation_chain(text_chunks)
#     # if "conversation" not in st.session_state:
#     #     st.session_state.conversation = None
#     # if "chat_history" not in st.session_state:
#     #     st.session_state.chat_history = None

#     st.header("Chat with multiple Files:")
#     user_question = st.text_input("Ask a question about your documents:")
#     # if user_question:
#     #     handle_userinput(user_question)
#     if user_question:
#         # Ensure that conversation_chain is initialized before calling handle_userinput
#         if st.session_state.conversation is None:
#             st.session_state.conversation = initialize_conversation_chain()

#         handle_userinput(user_question)

#     with st.sidebar:
#         st.subheader("Your documents")
#         docs = st.file_uploader(
#             "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
#         if st.button("Process"):
#             with st.spinner("Processing"):
#                 # get pdf text
#                 doc_list = []

#                 for file in docs:
#                     print('file - type : ', file.type)
#                     if file.type == 'text/plain':
#                         # file is .txt
#                         doc_list.extend(get_text_file(file))
#                     elif file.type in ['application/octet-stream', 'application/pdf']:
#                         # file is .pdf
#                         doc_list.extend(get_pdf_text(file))
#                     elif file.type == 'text/csv':
#                         # file is .csv
#                         doc_list.extend(get_csv_file(file))
#                     elif file.type == 'application/json':
#                         # file is .json
#                         doc_list.extend(get_json_file(file))

#                 # get the text chunks
#                 text_chunks = get_text_chunks(doc_list)

#                 # create vector store
#                 vectorstore = get_vectorstore(text_chunks)

#                 # create conversation chain
#                 st.session_state.conversation = get_conversation_chain(
#                     vectorstore)


# if __name__ == '__main__':
#     main()

import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp
import json
from pathlib import Path
from pprint import pprint
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
import os
from huggingface_hub import hf_hub_download # Hugging Face Hubμ—μ„œ λͺ¨λΈμ„ λ‹€μš΄λ‘œλ“œν•˜κΈ° μœ„ν•œ ν•¨μˆ˜μž…λ‹ˆλ‹€.

# PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_pdf_text(pdf_docs):
    temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
    pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

def get_text_file(text_docs):
    temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, text_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ ν…μŠ€νŠΈ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(text_docs.getvalue())  # ν…μŠ€νŠΈ λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

    text_loader = TextLoader(temp_filepath)  # TextLoaderλ₯Ό μ‚¬μš©ν•΄ ν…μŠ€νŠΈ λ¬Έμ„œλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    text_doc = text_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return text_doc  # μΆ”μΆœλœ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

def get_csv_file(csv_docs):
    temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, csv_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(csv_docs.getvalue())  # CSV λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

    csv_loader = CSVLoader(temp_filepath)  # CSVLoaderλ₯Ό μ‚¬μš©ν•΄ CSV λ¬Έμ„œλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    csv_doc = csv_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return csv_doc  # μΆ”μΆœλœ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

def get_json_file(json_docs):
    temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, json_docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.

    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(json_docs.getvalue())  # JSON λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.

    json_loader = JSONLoader(file_path=temp_filepath, jq_schema='.messages[].content',text_content=False)
    json_doc = json_loader.load()
    return json_doc    


    
# λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_text_chunks(documents):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,  # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
        chunk_overlap=200,  # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
        length_function=len  # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
    )

    documents = text_splitter.split_documents(documents)  # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€.
    return documents  # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


# ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.

def get_vectorstore(text_chunks):
    # μ›ν•˜λŠ” μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€.
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
                                       model_kwargs={'device': 'cpu'})  
    vectorstore = FAISS.from_documents(text_chunks, embeddings)  # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    return vectorstore  # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


# λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
def get_conversation_chain(vectorstore):
    model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
    model_basename = 'llama-2-7b-chat.Q2_K.gguf'
    model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)

    llm = LlamaCpp(model_path=model_path,
                   n_ctx=9000,
                   input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
                   verbose=True, )
    # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    # λŒ€ν™” 검색 체인을 μƒμ„±ν•©λ‹ˆλ‹€.
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain # μƒμ„±λœ λŒ€ν™” 체인을 λ°˜ν™˜ν•©λ‹ˆλ‹€.

# μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def handle_userinput(user_question):
    print('user_question =>  ', user_question)
    # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
    response = st.session_state.conversation({'question': user_question})
    # λŒ€ν™” 기둝을 μ €μž₯ν•©λ‹ˆλ‹€.
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple Files",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple Files:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                doc_list = []

                for file in docs:
                    print('file - type : ', file.type)
                    if file.type == 'text/plain':
                        # file is .txt
                        doc_list.extend(get_text_file(file))
                    elif file.type in ['application/octet-stream', 'application/pdf']:
                        # file is .pdf
                        doc_list.extend(get_pdf_text(file))
                    elif file.type == 'text/csv':
                        # file is .csv
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        # file is .json
                        doc_list.extend(get_json_file(file))

                # get the text chunks
                text_chunks = get_text_chunks(doc_list)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()