File size: 5,118 Bytes
32b2aaa d2b7e94 627d3d7 32b2aaa 627d3d7 32b2aaa 627d3d7 32b2aaa 627d3d7 32b2aaa 627d3d7 32b2aaa b473486 627d3d7 b473486 ae79826 b473486 32b2aaa 627d3d7 b473486 627d3d7 32b2aaa b473486 627d3d7 32b2aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import logging
import time
import torch
import torch.nn.functional as F
from torch.nn.utils.parametrize import remove_parametrizations
from torchaudio.functional import resample
from torchaudio.transforms import MelSpectrogram
from tqdm import trange
from modules import config
from modules.devices import devices
from .hparams import HParams
logger = logging.getLogger(__name__)
@torch.inference_mode()
def inference_chunk(
model,
dwav: torch.Tensor,
sr: int,
device: torch.device,
dtype: torch.dtype,
npad=441,
) -> torch.Tensor:
assert model.hp.wav_rate == sr, f"Expected {model.hp.wav_rate} Hz, got {sr} Hz"
del sr
length = dwav.shape[-1]
abs_max = dwav.abs().max().clamp(min=1e-7)
assert dwav.dim() == 1, f"Expected 1D waveform, got {dwav.dim()}D"
dwav = dwav.to(device=device, dtype=dtype)
dwav = dwav / abs_max # Normalize
dwav = F.pad(dwav, (0, npad))
hwav: torch.Tensor = model(dwav[None])[0].cpu() # (T,)
hwav = hwav[:length] # Trim padding
hwav = hwav * abs_max # Unnormalize
return hwav
def compute_corr(x, y):
return torch.fft.ifft(torch.fft.fft(x) * torch.fft.fft(y).conj()).abs()
def compute_offset(chunk1, chunk2, sr=44100):
"""
Args:
chunk1: (T,)
chunk2: (T,)
Returns:
offset: int, offset in samples such that chunk1 ~= chunk2.roll(-offset)
"""
hop_length = sr // 200 # 5 ms resolution
win_length = hop_length * 4
n_fft = 2 ** (win_length - 1).bit_length()
mel_fn = MelSpectrogram(
sample_rate=sr,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
n_mels=80,
f_min=0.0,
f_max=sr // 2,
)
chunk1 = chunk1.float()
chunk2 = chunk2.float()
spec1 = mel_fn(chunk1).log1p()
spec2 = mel_fn(chunk2).log1p()
corr = compute_corr(spec1, spec2) # (F, T)
corr = corr.mean(dim=0) # (T,)
argmax = corr.argmax().item()
if argmax > len(corr) // 2:
argmax -= len(corr)
offset = -argmax * hop_length
return offset
def merge_chunks(chunks, chunk_length, hop_length, sr=44100, length=None):
signal_length = (len(chunks) - 1) * hop_length + chunk_length
overlap_length = chunk_length - hop_length
signal = torch.zeros(signal_length, device=chunks[0].device)
fadein = torch.linspace(0, 1, overlap_length, device=chunks[0].device)
fadein = torch.cat([fadein, torch.ones(hop_length, device=chunks[0].device)])
fadeout = torch.linspace(1, 0, overlap_length, device=chunks[0].device)
fadeout = torch.cat([torch.ones(hop_length, device=chunks[0].device), fadeout])
for i, chunk in enumerate(chunks):
start = i * hop_length
end = start + chunk_length
if len(chunk) < chunk_length:
chunk = F.pad(chunk, (0, chunk_length - len(chunk)))
if i > 0:
pre_region = chunks[i - 1][-overlap_length:]
cur_region = chunk[:overlap_length]
offset = compute_offset(pre_region, cur_region, sr=sr)
start -= offset
end -= offset
if i == 0:
chunk = chunk * fadeout
elif i == len(chunks) - 1:
chunk = chunk * fadein
else:
chunk = chunk * fadein * fadeout
signal[start:end] += chunk[: len(signal[start:end])]
signal = signal[:length]
return signal
def remove_weight_norm_recursively(module):
for _, module in module.named_modules():
try:
remove_parametrizations(module, "weight")
except Exception:
pass
def inference(
model,
dwav,
sr,
device,
dtype,
chunk_seconds: float = 30.0,
overlap_seconds: float = 1.0,
):
if config.runtime_env_vars.off_tqdm:
trange = range
else:
from tqdm import trange
remove_weight_norm_recursively(model)
hp: HParams = model.hp
dwav = resample(
dwav,
orig_freq=sr,
new_freq=hp.wav_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method="sinc_interp_kaiser",
beta=14.769656459379492,
)
del sr # Everything is in hp.wav_rate now
sr = hp.wav_rate
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = time.perf_counter()
chunk_length = int(sr * chunk_seconds)
overlap_length = int(sr * overlap_seconds)
hop_length = chunk_length - overlap_length
chunks = []
for start in trange(0, dwav.shape[-1], hop_length):
chunk_dwav = inference_chunk(
model, dwav[start : start + chunk_length], sr, device, dtype
)
chunks.append(chunk_dwav.cpu())
devices.torch_gc()
hwav = merge_chunks(chunks, chunk_length, hop_length, sr=sr, length=dwav.shape[-1])
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed_time = time.perf_counter() - start_time
logger.info(
f"Elapsed time: {elapsed_time:.3f} s, {hwav.shape[-1] / elapsed_time / 1000:.3f} kHz"
)
devices.torch_gc()
return hwav, sr
|