chattts / modules /utils /audio.py
zhzluke96
update
bed01bd
raw
history blame
3.99 kB
import sys
from io import BytesIO
import numpy as np
import soundfile as sf
from pydub import AudioSegment, effects
import pyrubberband as pyrb
INT16_MAX = np.iinfo(np.int16).max
def audio_to_int16(audio_data: np.ndarray) -> np.ndarray:
if (
audio_data.dtype == np.float32
or audio_data.dtype == np.float64
or audio_data.dtype == np.float128
or audio_data.dtype == np.float16
):
audio_data = (audio_data * INT16_MAX).astype(np.int16)
return audio_data
def pydub_to_np(audio: AudioSegment) -> tuple[int, np.ndarray]:
"""
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels],
where each value is in range [-1.0, 1.0].
Returns tuple (audio_np_array, sample_rate).
"""
nd_array = np.array(audio.get_array_of_samples(), dtype=np.float32)
if audio.channels != 1:
nd_array = nd_array.reshape((-1, audio.channels))
nd_array = nd_array / (1 << (8 * audio.sample_width - 1))
return (
audio.frame_rate,
nd_array,
)
def audiosegment_to_librosawav(audiosegment: AudioSegment) -> np.ndarray:
"""
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels],
where each value is in range [-1.0, 1.0].
"""
channel_sounds = audiosegment.split_to_mono()
samples = [s.get_array_of_samples() for s in channel_sounds]
fp_arr = np.array(samples).T.astype(np.float32)
fp_arr /= np.iinfo(samples[0].typecode).max
fp_arr = fp_arr.reshape(-1)
return fp_arr
def ndarray_to_segment(
ndarray: np.ndarray, frame_rate: int, sample_width: int = None, channels: int = None
) -> AudioSegment:
buffer = BytesIO()
sf.write(buffer, ndarray, frame_rate, format="wav", subtype="PCM_16")
buffer.seek(0)
sound: AudioSegment = AudioSegment.from_wav(buffer)
if sample_width is None:
sample_width = sound.sample_width
if channels is None:
channels = sound.channels
return (
sound.set_frame_rate(frame_rate)
.set_sample_width(sample_width)
.set_channels(channels)
)
def apply_prosody_to_audio_segment(
audio_segment: AudioSegment,
rate: float = 1,
volume: float = 0,
pitch: int = 0,
sr: int = 24000,
) -> AudioSegment:
audio_data = audiosegment_to_librosawav(audio_segment)
audio_data = apply_prosody_to_audio_data(audio_data, rate, volume, pitch, sr)
audio_segment = ndarray_to_segment(
audio_data, sr, audio_segment.sample_width, audio_segment.channels
)
return audio_segment
def apply_prosody_to_audio_data(
audio_data: np.ndarray,
rate: float = 1,
volume: float = 0,
pitch: float = 0,
sr: int = 24000,
) -> np.ndarray:
if rate != 1:
audio_data = pyrb.time_stretch(audio_data, sr=sr, rate=rate)
if volume != 0:
audio_data = audio_data * volume
if pitch != 0:
audio_data = pyrb.pitch_shift(audio_data, sr=sr, n_steps=pitch)
return audio_data
def apply_normalize(
audio_data: np.ndarray,
headroom: float = 1,
sr: int = 24000,
):
segment = ndarray_to_segment(audio_data, sr)
segment = effects.normalize(seg=segment, headroom=headroom)
return pydub_to_np(segment)
if __name__ == "__main__":
input_file = sys.argv[1]
time_stretch_factors = [0.5, 0.75, 1.5, 1.0]
pitch_shift_factors = [-12, -5, 0, 5, 12]
input_sound = AudioSegment.from_mp3(input_file)
for time_factor in time_stretch_factors:
output_wav = f"{input_file}_time_{time_factor}.wav"
output_sound = apply_prosody_to_audio_segment(input_sound, rate=time_factor)
output_sound.export(output_wav, format="wav")
for pitch_factor in pitch_shift_factors:
output_wav = f"{input_file}_pitch_{pitch_factor}.wav"
output_sound = apply_prosody_to_audio_segment(input_sound, pitch=pitch_factor)
output_sound.export(output_wav, format="wav")