|
import numpy as np |
|
from pydub import AudioSegment |
|
from typing import Any, List, Dict |
|
from scipy.io.wavfile import write |
|
import io |
|
from modules.utils.audio import time_stretch, pitch_shift |
|
from modules import generate_audio |
|
from modules.normalization import text_normalize |
|
import logging |
|
import json |
|
import random |
|
import copy |
|
|
|
from modules.speaker import Speaker |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def audio_data_to_segment(audio_data, sr): |
|
byte_io = io.BytesIO() |
|
write(byte_io, rate=sr, data=audio_data) |
|
byte_io.seek(0) |
|
|
|
return AudioSegment.from_file(byte_io, format="wav") |
|
|
|
|
|
def combine_audio_segments(audio_segments: list) -> AudioSegment: |
|
combined_audio = AudioSegment.empty() |
|
for segment in audio_segments: |
|
combined_audio += segment |
|
return combined_audio |
|
|
|
|
|
def apply_prosody( |
|
audio_segment: AudioSegment, rate: float, volume: float, pitch: float |
|
) -> AudioSegment: |
|
if rate != 1: |
|
audio_segment = time_stretch(audio_segment, rate) |
|
|
|
if volume != 0: |
|
audio_segment += volume |
|
|
|
if pitch != 0: |
|
audio_segment = pitch_shift(audio_segment, pitch) |
|
|
|
return audio_segment |
|
|
|
|
|
def to_number(value, t, default=0): |
|
try: |
|
number = t(value) |
|
return number |
|
except (ValueError, TypeError) as e: |
|
return default |
|
|
|
|
|
class SynthesizeSegments: |
|
batch_default_spk_seed = int(np.random.randint(0, 2**32 - 1)) |
|
batch_default_infer_seed = int(np.random.randint(0, 2**32 - 1)) |
|
|
|
def __init__(self, batch_size: int = 8): |
|
self.batch_size = batch_size |
|
|
|
def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]: |
|
if segment.get("params", None) is not None: |
|
return segment["params"] |
|
|
|
text = segment.get("text", "") |
|
is_end = segment.get("is_end", False) |
|
|
|
text = str(text).strip() |
|
|
|
attrs = segment.get("attrs", {}) |
|
spk = attrs.get("spk", "") |
|
if isinstance(spk, str): |
|
spk = int(spk) |
|
seed = to_number(attrs.get("seed", ""), int, -1) |
|
top_k = to_number(attrs.get("top_k", ""), int, None) |
|
top_p = to_number(attrs.get("top_p", ""), float, None) |
|
temp = to_number(attrs.get("temp", ""), float, None) |
|
|
|
prompt1 = attrs.get("prompt1", "") |
|
prompt2 = attrs.get("prompt2", "") |
|
prefix = attrs.get("prefix", "") |
|
disable_normalize = attrs.get("normalize", "") == "False" |
|
|
|
params = { |
|
"text": text, |
|
"temperature": temp if temp is not None else 0.3, |
|
"top_P": top_p if top_p is not None else 0.5, |
|
"top_K": top_k if top_k is not None else 20, |
|
"spk": spk if spk else -1, |
|
"infer_seed": seed if seed else -1, |
|
"prompt1": prompt1 if prompt1 else "", |
|
"prompt2": prompt2 if prompt2 else "", |
|
"prefix": prefix if prefix else "", |
|
} |
|
|
|
if not disable_normalize: |
|
params["text"] = text_normalize(text, is_end=is_end) |
|
|
|
|
|
if params["spk"] == -1: |
|
params["spk"] = self.batch_default_spk_seed |
|
if params["infer_seed"] == -1: |
|
params["infer_seed"] = self.batch_default_infer_seed |
|
|
|
return params |
|
|
|
def bucket_segments( |
|
self, segments: List[Dict[str, Any]] |
|
) -> List[List[Dict[str, Any]]]: |
|
|
|
buckets = {} |
|
for segment in segments: |
|
params = self.segment_to_generate_params(segment) |
|
|
|
key_params = copy.copy(params) |
|
if isinstance(key_params.get("spk"), Speaker): |
|
key_params["spk"] = str(key_params["spk"].id) |
|
key = json.dumps( |
|
{k: v for k, v in key_params.items() if k != "text"}, sort_keys=True |
|
) |
|
if key not in buckets: |
|
buckets[key] = [] |
|
buckets[key].append(segment) |
|
|
|
|
|
bucket_list = list(buckets.values()) |
|
return bucket_list |
|
|
|
def synthesize_segments(self, segments: List[Dict[str, Any]]) -> List[AudioSegment]: |
|
audio_segments = [None] * len( |
|
segments |
|
) |
|
buckets = self.bucket_segments(segments) |
|
logger.debug(f"segments len: {len(segments)}") |
|
logger.debug(f"bucket pool size: {len(buckets)}") |
|
for bucket in buckets: |
|
for i in range(0, len(bucket), self.batch_size): |
|
batch = bucket[i : i + self.batch_size] |
|
param_arr = [ |
|
self.segment_to_generate_params(segment) for segment in batch |
|
] |
|
texts = [params["text"] for params in param_arr] |
|
|
|
params = param_arr[0] |
|
audio_datas = generate_audio.generate_audio_batch( |
|
texts=texts, |
|
temperature=params["temperature"], |
|
top_P=params["top_P"], |
|
top_K=params["top_K"], |
|
spk=params["spk"], |
|
infer_seed=params["infer_seed"], |
|
prompt1=params["prompt1"], |
|
prompt2=params["prompt2"], |
|
prefix=params["prefix"], |
|
) |
|
for idx, segment in enumerate(batch): |
|
(sr, audio_data) = audio_datas[idx] |
|
rate = float(segment.get("rate", "1.0")) |
|
volume = float(segment.get("volume", "0")) |
|
pitch = float(segment.get("pitch", "0")) |
|
|
|
audio_segment = audio_data_to_segment(audio_data, sr) |
|
audio_segment = apply_prosody(audio_segment, rate, volume, pitch) |
|
original_index = segments.index( |
|
segment |
|
) |
|
audio_segments[original_index] = ( |
|
audio_segment |
|
) |
|
|
|
return audio_segments |
|
|
|
|
|
def generate_audio_segment( |
|
text: str, |
|
spk: int = -1, |
|
seed: int = -1, |
|
top_p: float = 0.5, |
|
top_k: int = 20, |
|
temp: float = 0.3, |
|
prompt1: str = "", |
|
prompt2: str = "", |
|
prefix: str = "", |
|
enable_normalize=True, |
|
is_end: bool = False, |
|
) -> AudioSegment: |
|
if enable_normalize: |
|
text = text_normalize(text, is_end=is_end) |
|
|
|
logger.debug(f"generate segment: {text}") |
|
|
|
sample_rate, audio_data = generate_audio.generate_audio( |
|
text=text, |
|
temperature=temp if temp is not None else 0.3, |
|
top_P=top_p if top_p is not None else 0.5, |
|
top_K=top_k if top_k is not None else 20, |
|
spk=spk if spk else -1, |
|
infer_seed=seed if seed else -1, |
|
prompt1=prompt1 if prompt1 else "", |
|
prompt2=prompt2 if prompt2 else "", |
|
prefix=prefix if prefix else "", |
|
) |
|
|
|
byte_io = io.BytesIO() |
|
write(byte_io, sample_rate, audio_data) |
|
byte_io.seek(0) |
|
|
|
return AudioSegment.from_file(byte_io, format="wav") |
|
|
|
|
|
def synthesize_segment(segment: Dict[str, Any]) -> AudioSegment | None: |
|
if "break" in segment: |
|
pause_segment = AudioSegment.silent(duration=segment["break"]) |
|
return pause_segment |
|
|
|
attrs = segment.get("attrs", {}) |
|
text = segment.get("text", "") |
|
is_end = segment.get("is_end", False) |
|
|
|
text = str(text).strip() |
|
|
|
if text == "": |
|
return None |
|
|
|
spk = attrs.get("spk", "") |
|
if isinstance(spk, str): |
|
spk = int(spk) |
|
seed = to_number(attrs.get("seed", ""), int, -1) |
|
top_k = to_number(attrs.get("top_k", ""), int, None) |
|
top_p = to_number(attrs.get("top_p", ""), float, None) |
|
temp = to_number(attrs.get("temp", ""), float, None) |
|
|
|
prompt1 = attrs.get("prompt1", "") |
|
prompt2 = attrs.get("prompt2", "") |
|
prefix = attrs.get("prefix", "") |
|
disable_normalize = attrs.get("normalize", "") == "False" |
|
|
|
audio_segment = generate_audio_segment( |
|
text, |
|
enable_normalize=not disable_normalize, |
|
spk=spk, |
|
seed=seed, |
|
top_k=top_k, |
|
top_p=top_p, |
|
temp=temp, |
|
prompt1=prompt1, |
|
prompt2=prompt2, |
|
prefix=prefix, |
|
is_end=is_end, |
|
) |
|
|
|
rate = float(attrs.get("rate", "1.0")) |
|
volume = float(attrs.get("volume", "0")) |
|
pitch = float(attrs.get("pitch", "0")) |
|
|
|
audio_segment = apply_prosody(audio_segment, rate, volume, pitch) |
|
|
|
return audio_segment |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
ssml_segments = [ |
|
{ |
|
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]", |
|
"attrs": {"spk": 2, "temp": 0.1, "seed": 42}, |
|
}, |
|
{ |
|
"text": "大🍉,一个大🍉,嘿,你的感觉真的很奇妙 [lbreak]", |
|
"attrs": {"spk": 2, "temp": 0.1, "seed": 42}, |
|
}, |
|
{ |
|
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]", |
|
"attrs": {"spk": 2, "temp": 0.3, "seed": 42}, |
|
}, |
|
] |
|
|
|
synthesizer = SynthesizeSegments(batch_size=2) |
|
audio_segments = synthesizer.synthesize_segments(ssml_segments) |
|
combined_audio = combine_audio_segments(audio_segments) |
|
combined_audio.export("output.wav", format="wav") |
|
|