import sys from io import BytesIO import numpy as np import soundfile as sf from pydub import AudioSegment, effects import pyrubberband as pyrb INT16_MAX = np.iinfo(np.int16).max def audio_to_int16(audio_data: np.ndarray) -> np.ndarray: if ( audio_data.dtype == np.float32 or audio_data.dtype == np.float64 or audio_data.dtype == np.float128 or audio_data.dtype == np.float16 ): audio_data = (audio_data * INT16_MAX).astype(np.int16) return audio_data def pydub_to_np(audio: AudioSegment) -> tuple[int, np.ndarray]: """ Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels], where each value is in range [-1.0, 1.0]. Returns tuple (audio_np_array, sample_rate). """ nd_array = np.array(audio.get_array_of_samples(), dtype=np.float32) if audio.channels != 1: nd_array = nd_array.reshape((-1, audio.channels)) nd_array = nd_array / (1 << (8 * audio.sample_width - 1)) return ( audio.frame_rate, nd_array, ) def audiosegment_to_librosawav(audiosegment: AudioSegment) -> np.ndarray: """ Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels], where each value is in range [-1.0, 1.0]. """ channel_sounds = audiosegment.split_to_mono() samples = [s.get_array_of_samples() for s in channel_sounds] fp_arr = np.array(samples).T.astype(np.float32) fp_arr /= np.iinfo(samples[0].typecode).max fp_arr = fp_arr.reshape(-1) return fp_arr def ndarray_to_segment( ndarray: np.ndarray, frame_rate: int, sample_width: int = None, channels: int = None ) -> AudioSegment: buffer = BytesIO() sf.write(buffer, ndarray, frame_rate, format="wav", subtype="PCM_16") buffer.seek(0) sound: AudioSegment = AudioSegment.from_wav(buffer) if sample_width is None: sample_width = sound.sample_width if channels is None: channels = sound.channels return ( sound.set_frame_rate(frame_rate) .set_sample_width(sample_width) .set_channels(channels) ) def apply_prosody_to_audio_segment( audio_segment: AudioSegment, rate: float = 1, volume: float = 0, pitch: int = 0, sr: int = 24000, ) -> AudioSegment: audio_data = audiosegment_to_librosawav(audio_segment) audio_data = apply_prosody_to_audio_data(audio_data, rate, volume, pitch, sr) audio_segment = ndarray_to_segment( audio_data, sr, audio_segment.sample_width, audio_segment.channels ) return audio_segment def apply_prosody_to_audio_data( audio_data: np.ndarray, rate: float = 1, volume: float = 0, pitch: float = 0, sr: int = 24000, ) -> np.ndarray: if rate != 1: audio_data = pyrb.time_stretch(audio_data, sr=sr, rate=rate) if volume != 0: audio_data = audio_data * volume if pitch != 0: audio_data = pyrb.pitch_shift(audio_data, sr=sr, n_steps=pitch) return audio_data def apply_normalize( audio_data: np.ndarray, headroom: float = 1, sr: int = 24000, ): segment = ndarray_to_segment(audio_data, sr) segment = effects.normalize(seg=segment, headroom=headroom) return pydub_to_np(segment) if __name__ == "__main__": input_file = sys.argv[1] time_stretch_factors = [0.5, 0.75, 1.5, 1.0] pitch_shift_factors = [-12, -5, 0, 5, 12] input_sound = AudioSegment.from_mp3(input_file) for time_factor in time_stretch_factors: output_wav = f"{input_file}_time_{time_factor}.wav" output_sound = apply_prosody_to_audio_segment(input_sound, rate=time_factor) output_sound.export(output_wav, format="wav") for pitch_factor in pitch_shift_factors: output_wav = f"{input_file}_pitch_{pitch_factor}.wav" output_sound = apply_prosody_to_audio_segment(input_sound, pitch=pitch_factor) output_sound.export(output_wav, format="wav")