File size: 4,754 Bytes
7606e16
 
 
 
 
 
 
 
 
1ed024e
7606e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6824f1
7606e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3fd91
 
 
 
 
 
7606e16
 
 
 
 
 
 
 
 
1ed024e
 
7606e16
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
from typing import Dict, List

import datasets
import pandas as pd
import sentence_transformers
import streamlit as st
from findkit import feature_extractors, indexes, retrieval_pipeline
from toolz import partial
import config


def truncate_description(description, length=50):
    return " ".join(description.split()[:length])


def get_repos_with_descriptions(repos_df, repos):
    return repos_df.loc[repos]


def search_f(
    retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
    query: str,
    k: int,
    description_length: int,
    doc_col: List[str],
):
    results = retrieval_pipe.find_similar(query, k)
    # results['repo'] = results.index
    results["link"] = "https://github.com/" + results["repo"]
    for col in doc_col:
        results[col] = results[col].apply(
            lambda desc: truncate_description(desc, description_length)
        )
    shown_cols = ["repo", "tasks", "link", "distance"]
    shown_cols = shown_cols + doc_col
    return results.reset_index(drop=True)[shown_cols]


def show_retrieval_results(
    retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
    query: str,
    k: int,
    all_queries: List[str],
    description_length: int,
    repos_by_query: Dict[str, pd.DataFrame],
    doc_col: str,
):
    print("started retrieval")
    if query in all_queries:
        with st.expander(
            "query is in gold standard set queries. Toggle viewing gold standard results?"
        ):
            st.write("gold standard results")
            task_repos = repos_by_query.get_group(query)
            st.table(get_repos_with_descriptions(retrieval_pipe.X_df, task_repos))
    with st.spinner(text="fetching results"):
        st.write(
            search_f(retrieval_pipe, query, k, description_length, doc_col).to_html(
                escape=False, index=False
            ),
            unsafe_allow_html=True,
        )
    print("finished retrieval")


def setup_pipeline(
    extractor: feature_extractors.SentenceEncoderFeatureExtractor,
    documents_df: pd.DataFrame,
    text_col: str,
):
    retrieval_pipeline.RetrievalPipelineFactory.build(
        documents_df[text_col], metadata=documents_df
    )


@st.cache(allow_output_mutation=True)
def setup_retrieval_pipeline(
    query_encoder_path, document_encoder_path, documents, metadata
):
    document_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
        sentence_transformers.SentenceTransformer(document_encoder_path, device="cpu")
    )
    query_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
        sentence_transformers.SentenceTransformer(query_encoder_path, device="cpu")
    )
    retrieval_pipe = retrieval_pipeline.RetrievalPipelineFactory(
        feature_extractor=document_encoder,
        query_feature_extractor=query_encoder,
        index_factory=partial(indexes.NMSLIBIndex.build, distance="cosinesimil"),
    )
    return retrieval_pipe.build(documents, metadata=metadata)


def app(retrieval_pipeline, retrieval_df, doc_col):

    retrieved_results = st.sidebar.number_input("number of results", value=10)
    description_length = st.sidebar.number_input(
        "number of used description words", value=10
    )

    tasks_deduped = (
        retrieval_df["tasks"].explode().value_counts().reset_index()
    )  # drop_duplicates().sort_values().reset_index(drop=True)
    tasks_deduped.columns = ["task", "documents per task"]
    with st.sidebar.expander("View test set queries"):
        st.table(tasks_deduped.explode("task"))

    additional_shown_cols = st.sidebar.multiselect(
        label="additional cols", options=[doc_col], default=doc_col
    )

    repos_by_query = retrieval_df.explode("tasks").groupby("tasks")
    query = st.text_input("input query", value="metric learning")
    show_retrieval_results(
        retrieval_pipeline,
        query,
        retrieved_results,
        tasks_deduped["task"].to_list(),
        description_length,
        repos_by_query,
        additional_shown_cols,
    )


def app_main(
    query_encoder_path,
    document_encoder_path,
    data_path,
):
    print("loading data")

    retrieval_df = (
        datasets.load_dataset(data_path)["train"]
        .to_pandas()
        .drop_duplicates(subset=["repo"])
        .reset_index(drop=True)
    )
    print("setting up retrieval_pipe")
    doc_col = "dependencies"
    retrieval_pipeline = setup_retrieval_pipeline(
        query_encoder_path, document_encoder_path, retrieval_df[doc_col], retrieval_df
    )
    app(retrieval_pipeline, retrieval_df, doc_col)


app_main(
    query_encoder_path=config.query_encoder_model_name,
    document_encoder_path=config.document_encoder_model_name,
    data_path="lambdaofgod/pwc_repositories_with_dependencies",
)