File size: 6,181 Bytes
6a2e815
 
 
6abca35
 
 
 
 
 
 
6a2e815
 
 
f0666ff
15d500a
d36cdc2
 
 
 
25432dd
8a62cfd
d36cdc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25432dd
9a7ca97
 
 
 
e3fc854
 
 
 
 
 
f51ad9a
 
15d500a
6a2e815
 
 
 
 
 
 
 
 
6abca35
 
 
 
 
 
50ca940
6abca35
 
 
 
6a2e815
a94d4e4
6a2e815
0eb8092
d36cdc2
a94d4e4
8a62cfd
6abca35
25432dd
e3fc854
 
 
 
 
 
b7dcee7
e3fc854
 
d36cdc2
6abca35
 
 
15d500a
c14a5b1
15d500a
 
6abca35
15d500a
6abca35
15d500a
6abca35
15d500a
6abca35
15d500a
6abca35
15d500a
6abca35
 
 
15d500a
 
6abca35
 
15d500a
 
 
 
 
6abca35
 
 
15d500a
 
 
 
 
 
d36cdc2
 
 
 
15d500a
 
6abca35
 
 
15d500a
6abca35
 
cb99192
 
 
 
15d500a
04d064a
 
 
d36cdc2
 
 
15d500a
 
d36cdc2
 
15d500a
d36cdc2
 
15d500a
 
 
 
 
 
 
 
 
 
6abca35
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr

from peft import PeftModel, PeftConfig
from transformers import (
    MistralForCausalLM,
    TextIteratorStreamer,
    AutoTokenizer,
    BitsAndBytesConfig,
    GenerationConfig,
)
from time import sleep
from threading import Thread
from torch import float16
import spaces
import huggingface_hub
from threading import Thread
from queue import Queue
from time import sleep
from os import getenv
# from data_logger import log_data
from datetime import datetime

def check_thread(logging_queue: Queue):
    logging_callback = log_data(
        hf_token=getenv("HF_API_TOKEN"),
        dataset_name=getenv("OUTPUT_DATASET"),
        private=True,
    )
    while True:
        sleep(60)
        batch = []
        while not logging_queue.empty():
            batch.append(logging_queue.get())
        if len(batch) > 0:
            try:
                logging_callback(batch)
            except:
                print(
                    "Error happened while pushing data to HF. Puttting items back in queue..."
                )
                for item in batch:
                    logging_queue.put(item)


if False: #getenv("HF_API_TOKEN") is not None:
    #print("Starting logging thread...")
    #log_queue = Queue()
    #t = Thread(target=check_thread, args=(log_queue,))
    #t.start()
    
    logging_callback = log_data(
        hf_token=getenv("HF_API_TOKEN"),
        dataset_name=getenv("OUTPUT_DATASET"),
        private=True,
    )
else:
    print("No HF_API_TOKEN found. Logging is disabled.")


config = PeftConfig.from_pretrained("lang-uk/dragoman")
quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=float16,
    bnb_4bit_use_double_quant=False,
)

model = MistralForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-v0.1", quantization_config=quant_config
)


# device_map="auto",)
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda")
tokenizer = AutoTokenizer.from_pretrained(
    "mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False
)


@spaces.GPU(duration=30)
def translate(input_text):
    global log_queue
    # generated_text = ""
    input_text = input_text.strip()
    print(f"{datetime.utcnow()} | Translating: {input_text}")

    if False: #getenv("HF_API_TOKEN") is not None:
        try:
            logging_callback = log_data(
                hf_token=getenv("HF_API_TOKEN"),
                dataset_name=getenv("OUTPUT_DATASET"),
                private=True,
            )
            logging_callback([[input_text]])
        except:
            print("Error happened while pushing data to HF.")

    input_text = f"[INST] {input_text} [/INST]"
    inputs = tokenizer([input_text], return_tensors="pt").to(model.device)

    generation_kwargs = dict(
        inputs, max_new_tokens=200, num_beams=10, temperature=1, pad_token_id=tokenizer.eos_token_id
    )  # streamer=streamer,

    # streaming support
    # streamer = TextIteratorStreamer(
    #    tokenizer, skip_prompt=True, skip_special_tokens=True
    # )

    # thread = Thread(target=model.generate, kwargs=generation_kwargs)

    # thread.start()

    # for new_text in streamer:
    #    generated_text += new_text
    #    yield generated_text

    # generated_text += "\n"
    # yield generated_text

    output = model.generate(**generation_kwargs)
    output = (
        tokenizer.decode(output[0], skip_special_tokens=True)
        .split("[/INST] ")[-1]
        .strip()
    )
    return output


# download description of the model
desc_file = huggingface_hub.hf_hub_download("lang-uk/dragoman", "README.md")

with open(desc_file, "r") as f:
    model_description = f.read()
    model_description = model_description[model_description.find("---", 1) + 5 :]
    model_description = (
        """### By using this service, users are required to agree to the following terms: you agree that user input will be collected for future research and model improvements. \n\n"""
        + model_description
    )


iface = gr.Interface(
    fn=translate,
    inputs=gr.Textbox(
        value='This demo contains a model from paper "Setting up the Data Printer with Improved English to Ukrainian Machine Translation", accepted to UNLP 2024 workshop at the LREC-COLING 2024 conference.',
        label="Source sentence",
    ),
    outputs=gr.Textbox(
        value='Ця демо-версія містить модель із статті "Налаштування принтера даних із покращеним машинним перекладом з англійської на українську", яка була прийнята до семінару UNLP 2024 на конференції LREC-COLING 2024.',
        label="Translated sentence",
    ),
    examples=[
        [
            "The Colosseum in Rome was a symbol of the grandeur and power of the Roman Empire and was a place for the emperor to connect with the people by providing them with entertainment and free food."
        ],
        [
            "How many leaves would it drop in a month of February in a non-leap year?",
        ],
        [
            "ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot developed by OpenAI and launched on November 30, 2022. Based on a large language model, it enables users to refine and steer a conversation towards a desired length, format, style, level of detail, and language. Successive prompts and replies, known as prompt engineering, are considered at each conversation stage as a context.[2] ",
        ],
        [
            "who holds this neighborhood?",
        ],
        
    ],
    title="Dragoman: SOTA English-Ukrainian translation model",
    description='This demo contains a model from paper "Setting up the Data Printer with Improved English to Ukrainian Machine Translation", accepted to UNLP 2024 workshop at the LREC-COLING 2024 conference.',
    article=model_description,
    # thumbnail: str | None = None,
    # css: str | None = None,
    # batch: bool = False,
    # max_batch_size: int = 4,
    # api_name: str | Literal[False] | None = "predict",
    submit_btn="Translate",
)
iface.launch()