Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration | |
import time | |
from typing import List | |
import torch | |
import logging | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
else: | |
device = torch.device("cpu") | |
logging.warning("GPU not found, using CPU, translation will be very slow.") | |
st.set_page_config(page_title="M2M100 Translator") | |
lang_id = { | |
"Afrikaans": "af", | |
"Amharic": "am", | |
"Arabic": "ar", | |
"Asturian": "ast", | |
"Azerbaijani": "az", | |
"Bashkir": "ba", | |
"Belarusian": "be", | |
"Bulgarian": "bg", | |
"Bengali": "bn", | |
"Breton": "br", | |
"Bosnian": "bs", | |
"Catalan": "ca", | |
"Cebuano": "ceb", | |
"Czech": "cs", | |
"Welsh": "cy", | |
"Danish": "da", | |
"German": "de", | |
"Greeek": "el", | |
"English": "en", | |
"Spanish": "es", | |
"Estonian": "et", | |
"Persian": "fa", | |
"Fulah": "ff", | |
"Finnish": "fi", | |
"French": "fr", | |
"Western Frisian": "fy", | |
"Irish": "ga", | |
"Gaelic": "gd", | |
"Galician": "gl", | |
"Gujarati": "gu", | |
"Hausa": "ha", | |
"Hebrew": "he", | |
"Hindi": "hi", | |
"Croatian": "hr", | |
"Haitian": "ht", | |
"Hungarian": "hu", | |
"Armenian": "hy", | |
"Indonesian": "id", | |
"Igbo": "ig", | |
"Iloko": "ilo", | |
"Icelandic": "is", | |
"Italian": "it", | |
"Japanese": "ja", | |
"Javanese": "jv", | |
"Georgian": "ka", | |
"Kazakh": "kk", | |
"Central Khmer": "km", | |
"Kannada": "kn", | |
"Korean": "ko", | |
"Luxembourgish": "lb", | |
"Ganda": "lg", | |
"Lingala": "ln", | |
"Lao": "lo", | |
"Lithuanian": "lt", | |
"Latvian": "lv", | |
"Malagasy": "mg", | |
"Macedonian": "mk", | |
"Malayalam": "ml", | |
"Mongolian": "mn", | |
"Marathi": "mr", | |
"Malay": "ms", | |
"Burmese": "my", | |
"Nepali": "ne", | |
"Dutch": "nl", | |
"Norwegian": "no", | |
"Northern Sotho": "ns", | |
"Occitan": "oc", | |
"Oriya": "or", | |
"Panjabi": "pa", | |
"Polish": "pl", | |
"Pushto": "ps", | |
"Portuguese": "pt", | |
"Romanian": "ro", | |
"Russian": "ru", | |
"Sindhi": "sd", | |
"Sinhala": "si", | |
"Slovak": "sk", | |
"Slovenian": "sl", | |
"Somali": "so", | |
"Albanian": "sq", | |
"Serbian": "sr", | |
"Swati": "ss", | |
"Sundanese": "su", | |
"Swedish": "sv", | |
"Swahili": "sw", | |
"Tamil": "ta", | |
"Thai": "th", | |
"Tagalog": "tl", | |
"Tswana": "tn", | |
"Turkish": "tr", | |
"Ukrainian": "uk", | |
"Urdu": "ur", | |
"Uzbek": "uz", | |
"Vietnamese": "vi", | |
"Wolof": "wo", | |
"Xhosa": "xh", | |
"Yiddish": "yi", | |
"Yoruba": "yo", | |
"Chinese": "zh", | |
"Zulu": "zu", | |
} | |
def load_model( | |
pretrained_model: str = "facebook/m2m100_1.2B", | |
cache_dir: str = "models/", | |
): | |
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir) | |
model = M2M100ForConditionalGeneration.from_pretrained( | |
pretrained_model, cache_dir=cache_dir | |
).to(device) | |
model.eval() | |
return tokenizer, model | |
st.title("M2M100 Translator") | |
st.write("M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n") | |
st.write(" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate") | |
user_input: str = st.text_area( | |
"Input text", | |
height=200, | |
max_chars=5120, | |
) | |
source_lang = st.selectbox(label="Source language", options=list(lang_id.keys())) | |
target_lang = st.selectbox(label="Target language", options=list(lang_id.keys())) | |
if st.button("Run"): | |
time_start = time.time() | |
tokenizer, model = load_model() | |
src_lang = lang_id[source_lang] | |
trg_lang = lang_id[target_lang] | |
tokenizer.src_lang = src_lang | |
with torch.no_grad(): | |
encoded_input = tokenizer(user_input, return_tensors="pt").to(device) | |
generated_tokens = model.generate( | |
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang) | |
) | |
translated_text = tokenizer.batch_decode( | |
generated_tokens, skip_special_tokens=True | |
)[0] | |
time_end = time.time() | |
st.success(translated_text) | |
st.write(f"Computation time: {round((time_end-time_start),3)} segs") | |