lanzhiwang commited on
Commit
68c79c0
1 Parent(s): b222d67
Files changed (2) hide show
  1. app-bak.py +172 -0
  2. app.py +0 -4
app-bak.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import io
4
+ from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
5
+ import time
6
+ import json
7
+ from typing import List
8
+ import torch
9
+ import random
10
+ import logging
11
+
12
+ if torch.cuda.is_available():
13
+ device = torch.device("cuda:0")
14
+ else:
15
+ device = torch.device("cpu")
16
+ logging.warning("GPU not found, using CPU, translation will be very slow.")
17
+
18
+ st.cache(suppress_st_warning=True, allow_output_mutation=True)
19
+ st.set_page_config(page_title="M2M100 Translator")
20
+
21
+ lang_id = {
22
+ "Afrikaans": "af",
23
+ "Amharic": "am",
24
+ "Arabic": "ar",
25
+ "Asturian": "ast",
26
+ "Azerbaijani": "az",
27
+ "Bashkir": "ba",
28
+ "Belarusian": "be",
29
+ "Bulgarian": "bg",
30
+ "Bengali": "bn",
31
+ "Breton": "br",
32
+ "Bosnian": "bs",
33
+ "Catalan": "ca",
34
+ "Cebuano": "ceb",
35
+ "Czech": "cs",
36
+ "Welsh": "cy",
37
+ "Danish": "da",
38
+ "German": "de",
39
+ "Greeek": "el",
40
+ "English": "en",
41
+ "Spanish": "es",
42
+ "Estonian": "et",
43
+ "Persian": "fa",
44
+ "Fulah": "ff",
45
+ "Finnish": "fi",
46
+ "French": "fr",
47
+ "Western Frisian": "fy",
48
+ "Irish": "ga",
49
+ "Gaelic": "gd",
50
+ "Galician": "gl",
51
+ "Gujarati": "gu",
52
+ "Hausa": "ha",
53
+ "Hebrew": "he",
54
+ "Hindi": "hi",
55
+ "Croatian": "hr",
56
+ "Haitian": "ht",
57
+ "Hungarian": "hu",
58
+ "Armenian": "hy",
59
+ "Indonesian": "id",
60
+ "Igbo": "ig",
61
+ "Iloko": "ilo",
62
+ "Icelandic": "is",
63
+ "Italian": "it",
64
+ "Japanese": "ja",
65
+ "Javanese": "jv",
66
+ "Georgian": "ka",
67
+ "Kazakh": "kk",
68
+ "Central Khmer": "km",
69
+ "Kannada": "kn",
70
+ "Korean": "ko",
71
+ "Luxembourgish": "lb",
72
+ "Ganda": "lg",
73
+ "Lingala": "ln",
74
+ "Lao": "lo",
75
+ "Lithuanian": "lt",
76
+ "Latvian": "lv",
77
+ "Malagasy": "mg",
78
+ "Macedonian": "mk",
79
+ "Malayalam": "ml",
80
+ "Mongolian": "mn",
81
+ "Marathi": "mr",
82
+ "Malay": "ms",
83
+ "Burmese": "my",
84
+ "Nepali": "ne",
85
+ "Dutch": "nl",
86
+ "Norwegian": "no",
87
+ "Northern Sotho": "ns",
88
+ "Occitan": "oc",
89
+ "Oriya": "or",
90
+ "Panjabi": "pa",
91
+ "Polish": "pl",
92
+ "Pushto": "ps",
93
+ "Portuguese": "pt",
94
+ "Romanian": "ro",
95
+ "Russian": "ru",
96
+ "Sindhi": "sd",
97
+ "Sinhala": "si",
98
+ "Slovak": "sk",
99
+ "Slovenian": "sl",
100
+ "Somali": "so",
101
+ "Albanian": "sq",
102
+ "Serbian": "sr",
103
+ "Swati": "ss",
104
+ "Sundanese": "su",
105
+ "Swedish": "sv",
106
+ "Swahili": "sw",
107
+ "Tamil": "ta",
108
+ "Thai": "th",
109
+ "Tagalog": "tl",
110
+ "Tswana": "tn",
111
+ "Turkish": "tr",
112
+ "Ukrainian": "uk",
113
+ "Urdu": "ur",
114
+ "Uzbek": "uz",
115
+ "Vietnamese": "vi",
116
+ "Wolof": "wo",
117
+ "Xhosa": "xh",
118
+ "Yiddish": "yi",
119
+ "Yoruba": "yo",
120
+ "Chinese": "zh",
121
+ "Zulu": "zu",
122
+ }
123
+
124
+
125
+ @st.cache(suppress_st_warning=True, allow_output_mutation=True)
126
+ def load_model(
127
+ pretrained_model: str = "facebook/m2m100_1.2B",
128
+ cache_dir: str = "models/",
129
+ ):
130
+ tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
131
+ model = M2M100ForConditionalGeneration.from_pretrained(
132
+ pretrained_model, cache_dir=cache_dir
133
+ ).to(device)
134
+ model.eval()
135
+ return tokenizer, model
136
+
137
+
138
+ st.title("M2M100 Translator")
139
+ st.write("M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n")
140
+
141
+ st.write(" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate")
142
+
143
+
144
+ user_input: str = st.text_area(
145
+ "Input text",
146
+ height=200,
147
+ max_chars=5120,
148
+ )
149
+
150
+ source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
151
+ target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
152
+
153
+ if st.button("Run"):
154
+ time_start = time.time()
155
+ tokenizer, model = load_model()
156
+
157
+ src_lang = lang_id[source_lang]
158
+ trg_lang = lang_id[target_lang]
159
+ tokenizer.src_lang = src_lang
160
+ with torch.no_grad():
161
+ encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
162
+ generated_tokens = model.generate(
163
+ **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
164
+ )
165
+ translated_text = tokenizer.batch_decode(
166
+ generated_tokens, skip_special_tokens=True
167
+ )[0]
168
+
169
+ time_end = time.time()
170
+ st.success(translated_text)
171
+
172
+ st.write(f"Computation time: {round((time_end-time_start),3)} segs")
app.py CHANGED
@@ -1,12 +1,8 @@
1
  import streamlit as st
2
- import os
3
- import io
4
  from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
5
  import time
6
- import json
7
  from typing import List
8
  import torch
9
- import random
10
  import logging
11
 
12
  if torch.cuda.is_available():
 
1
  import streamlit as st
 
 
2
  from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
3
  import time
 
4
  from typing import List
5
  import torch
 
6
  import logging
7
 
8
  if torch.cuda.is_available():