import gradio as gr from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) # generator = pipeline('text-generation', model='gpt2') def generate(text): result = generator(text, max_length=30, num_return_sequences=1) return result[0]["generated_text"] examples = [ ["The Moon's orbit around Earth has"], ["The smooth Borealis basin in the Northern Hemisphere covers 40%"], ] demo = gr.Interface( fn=generate, inputs=gr.inputs.Textbox(lines=5, label="Input Text"), outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples ) demo.launch(server_name="0.0.0.0", server_port=7860)