Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,585 Bytes
376b097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from diffusers.utils import BaseOutput
@dataclass
class LEditsPPDiffusionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or
`None` if safety checking could not be performed.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: Optional[List[bool]]
@dataclass
class LEditsPPInversionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
input_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape `
(batch_size, height, width, num_channels)`.
vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape
` (batch_size, height, width, num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray] |