File size: 74,883 Bytes
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
import inspect
import math
from itertools import repeat
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import PIL
        >>> import requests
        >>> import torch
        >>> from io import BytesIO

        >>> from diffusers import LEditsPPPipelineStableDiffusion
        >>> from diffusers.utils import load_image

        >>> pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
        ... )
        >>> pipe = pipe.to("cuda")

        >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/cherry_blossom.png"
        >>> image = load_image(img_url).convert("RGB")

        >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.1)

        >>> edited_image = pipe(
        ...     editing_prompt=["cherry blossom"], edit_guidance_scale=10.0, edit_threshold=0.75
        ... ).images[0]
        ```
"""


# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.AttentionStore
class LeditsAttentionStore:
    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}

    def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
        # attn.shape = batch_size * head_size, seq_len query, seq_len_key
        if attn.shape[1] <= self.max_size:
            bs = 1 + int(PnP) + editing_prompts
            skip = 2 if PnP else 1  # skip PnP & unconditional
            attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
            source_batch_size = int(attn.shape[1] // bs)
            self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"

        self.step_store[key].append(attn)

    def between_steps(self, store_step=True):
        if store_step:
            if self.average:
                if len(self.attention_store) == 0:
                    self.attention_store = self.step_store
                else:
                    for key in self.attention_store:
                        for i in range(len(self.attention_store[key])):
                            self.attention_store[key][i] += self.step_store[key][i]
            else:
                if len(self.attention_store) == 0:
                    self.attention_store = [self.step_store]
                else:
                    self.attention_store.append(self.step_store)

            self.cur_step += 1
        self.step_store = self.get_empty_store()

    def get_attention(self, step: int):
        if self.average:
            attention = {
                key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
            }
        else:
            assert step is not None
            attention = self.attention_store[step]
        return attention

    def aggregate_attention(
        self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
    ):
        out = [[] for x in range(self.batch_size)]
        if isinstance(res, int):
            num_pixels = res**2
            resolution = (res, res)
        else:
            num_pixels = res[0] * res[1]
            resolution = res[:2]

        for location in from_where:
            for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
                for batch, item in enumerate(bs_item):
                    if item.shape[1] == num_pixels:
                        cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
                        out[batch].append(cross_maps)

        out = torch.stack([torch.cat(x, dim=0) for x in out])
        # average over heads
        out = out.sum(1) / out.shape[1]
        return out

    def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
        self.step_store = self.get_empty_store()
        self.attention_store = []
        self.cur_step = 0
        self.average = average
        self.batch_size = batch_size
        if max_size is None:
            self.max_size = max_resolution**2
        elif max_size is not None and max_resolution is None:
            self.max_size = max_size
        else:
            raise ValueError("Only allowed to set one of max_resolution or max_size")


# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
class LeditsGaussianSmoothing:
    def __init__(self, device):
        kernel_size = [3, 3]
        sigma = [0.5, 0.5]

        # The gaussian kernel is the product of the gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)

        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))

        self.weight = kernel.to(device)

    def __call__(self, input):
        """
        Arguments:
        Apply gaussian filter to input.
            input (torch.Tensor): Input to apply gaussian filter on.
        Returns:
            filtered (torch.Tensor): Filtered output.
        """
        return F.conv2d(input, weight=self.weight.to(input.dtype))


class LEDITSCrossAttnProcessor:
    def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
        self.attnstore = attention_store
        self.place_in_unet = place_in_unet
        self.editing_prompts = editing_prompts
        self.pnp = pnp

    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states,
        attention_mask=None,
        temb=None,
    ):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        self.attnstore(
            attention_probs,
            is_cross=True,
            place_in_unet=self.place_in_unet,
            editing_prompts=self.editing_prompts,
            PnP=self.pnp,
        )

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states / attn.rescale_output_factor
        return hidden_states


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class LEditsPPPipelineStableDiffusion(
    DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
    """
    Pipeline for textual image editing using LEDits++ with Stable Diffusion.

    This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass
    documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular
    device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer ([`~transformers.CLIPTokenizer`]):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
            automatically be set to [`DPMSolverMultistepScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler],
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
            scheduler = DPMSolverMultistepScheduler.from_config(
                scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
            )
            logger.warning(
                "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
                "The scheduler has been changed to DPMSolverMultistepScheduler."
            )

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

        self.inversion_steps = None

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, eta, generator=None):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
    def check_inputs(
        self,
        negative_prompt=None,
        editing_prompt_embeddings=None,
        negative_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )
        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if editing_prompt_embeddings is not None and negative_prompt_embeds is not None:
            if editing_prompt_embeddings.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
        # shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)

        # if latents.shape != shape:
        #    raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")

        latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_unet(self, attention_store, PnP: bool = False):
        attn_procs = {}
        for name in self.unet.attn_processors.keys():
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                place_in_unet = "down"
            else:
                continue

            if "attn2" in name and place_in_unet != "mid":
                attn_procs[name] = LEDITSCrossAttnProcessor(
                    attention_store=attention_store,
                    place_in_unet=place_in_unet,
                    pnp=PnP,
                    editing_prompts=self.enabled_editing_prompts,
                )
            else:
                attn_procs[name] = AttnProcessor()

        self.unet.set_attn_processor(attn_procs)

    def encode_prompt(
        self,
        device,
        num_images_per_prompt,
        enable_edit_guidance,
        negative_prompt=None,
        editing_prompt=None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        editing_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            enable_edit_guidance (`bool`):
                whether to perform any editing or reconstruct the input image instead
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            editing_prompt (`str` or `List[str]`, *optional*):
                Editing prompt(s) to be encoded. If not defined, one has to pass `editing_prompt_embeds` instead.
            editing_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        batch_size = self.batch_size
        num_edit_tokens = None

        if negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected"
                    f"{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = negative_prompt_embeds.dtype

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        if enable_edit_guidance:
            if editing_prompt_embeds is None:
                # textual inversion: procecss multi-vector tokens if necessary
                # if isinstance(self, TextualInversionLoaderMixin):
                #    prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
                if isinstance(editing_prompt, str):
                    editing_prompt = [editing_prompt]

                max_length = negative_prompt_embeds.shape[1]
                text_inputs = self.tokenizer(
                    [x for item in editing_prompt for x in repeat(item, batch_size)],
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                    return_length=True,
                )

                num_edit_tokens = text_inputs.length - 2  # not counting startoftext and endoftext
                text_input_ids = text_inputs.input_ids
                untruncated_ids = self.tokenizer(
                    [x for item in editing_prompt for x in repeat(item, batch_size)],
                    padding="longest",
                    return_tensors="pt",
                ).input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = self.tokenizer.batch_decode(
                        untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                    )
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                    )

                if (
                    hasattr(self.text_encoder.config, "use_attention_mask")
                    and self.text_encoder.config.use_attention_mask
                ):
                    attention_mask = text_inputs.attention_mask.to(device)
                else:
                    attention_mask = None

                if clip_skip is None:
                    editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                    editing_prompt_embeds = editing_prompt_embeds[0]
                else:
                    editing_prompt_embeds = self.text_encoder(
                        text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                    )
                    # Access the `hidden_states` first, that contains a tuple of
                    # all the hidden states from the encoder layers. Then index into
                    # the tuple to access the hidden states from the desired layer.
                    editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)]
                    # We also need to apply the final LayerNorm here to not mess with the
                    # representations. The `last_hidden_states` that we typically use for
                    # obtaining the final prompt representations passes through the LayerNorm
                    # layer.
                    editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds)

            editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)

            bs_embed_edit, seq_len, _ = editing_prompt_embeds.shape
            editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)
            editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance

        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        editing_prompt: Optional[Union[str, List[str]]] = None,
        editing_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
        edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
        edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
        edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
        edit_threshold: Optional[Union[float, List[float]]] = 0.9,
        user_mask: Optional[torch.Tensor] = None,
        sem_guidance: Optional[List[torch.Tensor]] = None,
        use_cross_attn_mask: bool = False,
        use_intersect_mask: bool = True,
        attn_store_steps: Optional[List[int]] = [],
        store_averaged_over_steps: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for editing. The
        [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusion.invert`] method has to be called beforehand. Edits will
        always be performed for the last inverted image(s).

        Args:
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] instead of a plain
                tuple.
            editing_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. The image is reconstructed by setting
                `editing_prompt = None`. Guidance direction of prompt should be specified via
                `reverse_editing_direction`.
            editing_prompt_embeds (`torch.Tensor>`, *optional*):
                Pre-computed embeddings to use for guiding the image generation. Guidance direction of embedding should
                be specified via `reverse_editing_direction`.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
                Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
            edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
                Guidance scale for guiding the image generation. If provided as list values should correspond to
                `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
                Paper](https://arxiv.org/abs/2301.12247).
            edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
                Number of diffusion steps (for each prompt) for which guidance will not be applied.
            edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
                Number of diffusion steps (for each prompt) after which guidance will no longer be applied.
            edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
                Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
                'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
                Paper](https://arxiv.org/abs/2301.12247).
            user_mask (`torch.Tensor`, *optional*):
                User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
                implicit masks do not meet user preferences.
            sem_guidance (`List[torch.Tensor]`, *optional*):
                List of pre-generated guidance vectors to be applied at generation. Length of the list has to
                correspond to `num_inference_steps`.
            use_cross_attn_mask (`bool`, defaults to `False`):
                Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
                is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
                paper](https://arxiv.org/pdf/2311.16711.pdf).
            use_intersect_mask (`bool`, defaults to `True`):
                Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
                the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
                are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
            attn_store_steps (`List[int]`, *optional*):
                Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
            store_averaged_over_steps (`bool`, defaults to `True`):
                Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
                False, attention maps for each step are stores separately. Just for visualization purposes.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
            returning a tuple, the first element is a list with the generated images, and the second element is a list
            of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
            content, according to the `safety_checker`.
        """

        if self.inversion_steps is None:
            raise ValueError(
                "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
            )

        eta = self.eta
        num_images_per_prompt = 1
        latents = self.init_latents

        zs = self.zs
        self.scheduler.set_timesteps(len(self.scheduler.timesteps))

        if use_intersect_mask:
            use_cross_attn_mask = True

        if use_cross_attn_mask:
            self.smoothing = LeditsGaussianSmoothing(self.device)

        if user_mask is not None:
            user_mask = user_mask.to(self.device)

        org_prompt = ""

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            negative_prompt,
            editing_prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        batch_size = self.batch_size

        if editing_prompt:
            enable_edit_guidance = True
            if isinstance(editing_prompt, str):
                editing_prompt = [editing_prompt]
            self.enabled_editing_prompts = len(editing_prompt)
        elif editing_prompt_embeds is not None:
            enable_edit_guidance = True
            self.enabled_editing_prompts = editing_prompt_embeds.shape[0]
        else:
            self.enabled_editing_prompts = 0
            enable_edit_guidance = False

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        edit_concepts, uncond_embeddings, num_edit_tokens = self.encode_prompt(
            editing_prompt=editing_prompt,
            device=self.device,
            num_images_per_prompt=num_images_per_prompt,
            enable_edit_guidance=enable_edit_guidance,
            negative_prompt=negative_prompt,
            editing_prompt_embeds=editing_prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if enable_edit_guidance:
            text_embeddings = torch.cat([uncond_embeddings, edit_concepts])
            self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
        else:
            text_embeddings = torch.cat([uncond_embeddings])

        # 4. Prepare timesteps
        # self.scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.inversion_steps
        t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0] :])}

        if use_cross_attn_mask:
            self.attention_store = LeditsAttentionStore(
                average=store_averaged_over_steps,
                batch_size=batch_size,
                max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
                max_resolution=None,
            )
            self.prepare_unet(self.attention_store, PnP=False)
            resolution = latents.shape[-2:]
            att_res = (int(resolution[0] / 4), int(resolution[1] / 4))

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            None,
            None,
            text_embeddings.dtype,
            self.device,
            latents,
        )

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(eta)

        self.sem_guidance = None
        self.activation_mask = None

        # 7. Denoising loop
        num_warmup_steps = 0
        with self.progress_bar(total=len(timesteps)) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance

                if enable_edit_guidance:
                    latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
                else:
                    latent_model_input = latents

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                text_embed_input = text_embeddings

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample

                noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts)  # [b,4, 64, 64]
                noise_pred_uncond = noise_pred_out[0]
                noise_pred_edit_concepts = noise_pred_out[1:]

                noise_guidance_edit = torch.zeros(
                    noise_pred_uncond.shape,
                    device=self.device,
                    dtype=noise_pred_uncond.dtype,
                )

                if sem_guidance is not None and len(sem_guidance) > i:
                    noise_guidance_edit += sem_guidance[i].to(self.device)

                elif enable_edit_guidance:
                    if self.activation_mask is None:
                        self.activation_mask = torch.zeros(
                            (len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
                        )

                    if self.sem_guidance is None:
                        self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))

                    for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
                        if isinstance(edit_warmup_steps, list):
                            edit_warmup_steps_c = edit_warmup_steps[c]
                        else:
                            edit_warmup_steps_c = edit_warmup_steps
                        if i < edit_warmup_steps_c:
                            continue

                        if isinstance(edit_guidance_scale, list):
                            edit_guidance_scale_c = edit_guidance_scale[c]
                        else:
                            edit_guidance_scale_c = edit_guidance_scale

                        if isinstance(edit_threshold, list):
                            edit_threshold_c = edit_threshold[c]
                        else:
                            edit_threshold_c = edit_threshold
                        if isinstance(reverse_editing_direction, list):
                            reverse_editing_direction_c = reverse_editing_direction[c]
                        else:
                            reverse_editing_direction_c = reverse_editing_direction

                        if isinstance(edit_cooldown_steps, list):
                            edit_cooldown_steps_c = edit_cooldown_steps[c]
                        elif edit_cooldown_steps is None:
                            edit_cooldown_steps_c = i + 1
                        else:
                            edit_cooldown_steps_c = edit_cooldown_steps

                        if i >= edit_cooldown_steps_c:
                            continue

                        noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond

                        if reverse_editing_direction_c:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1

                        noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c

                        if user_mask is not None:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask

                        if use_cross_attn_mask:
                            out = self.attention_store.aggregate_attention(
                                attention_maps=self.attention_store.step_store,
                                prompts=self.text_cross_attention_maps,
                                res=att_res,
                                from_where=["up", "down"],
                                is_cross=True,
                                select=self.text_cross_attention_maps.index(editing_prompt[c]),
                            )
                            attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]]  # 0 -> startoftext

                            # average over all tokens
                            if attn_map.shape[3] != num_edit_tokens[c]:
                                raise ValueError(
                                    f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
                                )

                            attn_map = torch.sum(attn_map, dim=3)

                            # gaussian_smoothing
                            attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
                            attn_map = self.smoothing(attn_map).squeeze(1)

                            # torch.quantile function expects float32
                            if attn_map.dtype == torch.float32:
                                tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
                            else:
                                tmp = torch.quantile(
                                    attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
                                ).to(attn_map.dtype)
                            attn_mask = torch.where(
                                attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
                            )

                            # resolution must match latent space dimension
                            attn_mask = F.interpolate(
                                attn_mask.unsqueeze(1),
                                noise_guidance_edit_tmp.shape[-2:],  # 64,64
                            ).repeat(1, 4, 1, 1)
                            self.activation_mask[i, c] = attn_mask.detach().cpu()
                            if not use_intersect_mask:
                                noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask

                        if use_intersect_mask:
                            if t <= 800:
                                noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                                noise_guidance_edit_tmp_quantile = torch.sum(
                                    noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                                )
                                noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
                                    1, self.unet.config.in_channels, 1, 1
                                )

                                # torch.quantile function expects float32
                                if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                    tmp = torch.quantile(
                                        noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                        edit_threshold_c,
                                        dim=2,
                                        keepdim=False,
                                    )
                                else:
                                    tmp = torch.quantile(
                                        noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                        edit_threshold_c,
                                        dim=2,
                                        keepdim=False,
                                    ).to(noise_guidance_edit_tmp_quantile.dtype)

                                intersect_mask = (
                                    torch.where(
                                        noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                        torch.ones_like(noise_guidance_edit_tmp),
                                        torch.zeros_like(noise_guidance_edit_tmp),
                                    )
                                    * attn_mask
                                )

                                self.activation_mask[i, c] = intersect_mask.detach().cpu()

                                noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask

                            else:
                                # print(f"only attention mask for step {i}")
                                noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask

                        elif not use_cross_attn_mask:
                            # calculate quantile
                            noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                            noise_guidance_edit_tmp_quantile = torch.sum(
                                noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                            )
                            noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)

                            # torch.quantile function expects float32
                            if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                )
                            else:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                ).to(noise_guidance_edit_tmp_quantile.dtype)

                            self.activation_mask[i, c] = (
                                torch.where(
                                    noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                    torch.ones_like(noise_guidance_edit_tmp),
                                    torch.zeros_like(noise_guidance_edit_tmp),
                                )
                                .detach()
                                .cpu()
                            )

                            noise_guidance_edit_tmp = torch.where(
                                noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                noise_guidance_edit_tmp,
                                torch.zeros_like(noise_guidance_edit_tmp),
                            )

                        noise_guidance_edit += noise_guidance_edit_tmp

                    self.sem_guidance[i] = noise_guidance_edit.detach().cpu()

                noise_pred = noise_pred_uncond + noise_guidance_edit

                if enable_edit_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred,
                        noise_pred_edit_concepts.mean(dim=0, keepdim=False),
                        guidance_rescale=self.guidance_rescale,
                    )

                idx = t_to_idx[int(t)]
                latents = self.scheduler.step(
                    noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs
                ).prev_sample

                # step callback
                if use_cross_attn_mask:
                    store_step = i in attn_store_steps
                    self.attention_store.between_steps(store_step)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    # prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # 8. Post-processing
        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
            image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    @torch.no_grad()
    def invert(
        self,
        image: PipelineImageInput,
        source_prompt: str = "",
        source_guidance_scale: float = 3.5,
        num_inversion_steps: int = 30,
        skip: float = 0.15,
        generator: Optional[torch.Generator] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        resize_mode: Optional[str] = "default",
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
    ):
        r"""
        The function to the pipeline for image inversion as described by the [LEDITS++
        Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
        inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.

        Args:
            image (`PipelineImageInput`):
                Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
                ratio.
            source_prompt (`str`, defaults to `""`):
                Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
                if the `source_prompt` is `""`.
            source_guidance_scale (`float`, defaults to `3.5`):
                Strength of guidance during inversion.
            num_inversion_steps (`int`, defaults to `30`):
                Number of total performed inversion steps after discarding the initial `skip` steps.
            skip (`float`, defaults to `0.15`):
                Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
                will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
                deterministic.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
                height.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
                the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
                resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
                center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
                image to fit within the specified width and height, maintaining the aspect ratio, and then center the
                image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
            crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
                The crop coordinates for each image in the batch. If `None`, will not crop the image.

        Returns:
            [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
            and respective VAE reconstruction(s).
        """
        # Reset attn processor, we do not want to store attn maps during inversion
        self.unet.set_attn_processor(AttnProcessor())

        self.eta = 1.0

        self.scheduler.config.timestep_spacing = "leading"
        self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
        self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
        timesteps = self.inversion_steps

        # 1. encode image
        x0, resized = self.encode_image(
            image,
            dtype=self.text_encoder.dtype,
            height=height,
            width=width,
            resize_mode=resize_mode,
            crops_coords=crops_coords,
        )
        self.batch_size = x0.shape[0]

        # autoencoder reconstruction
        image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
        image_rec = self.image_processor.postprocess(image_rec, output_type="pil")

        # 2. get embeddings
        do_classifier_free_guidance = source_guidance_scale > 1.0

        lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None

        uncond_embedding, text_embeddings, _ = self.encode_prompt(
            num_images_per_prompt=1,
            device=self.device,
            negative_prompt=None,
            enable_edit_guidance=do_classifier_free_guidance,
            editing_prompt=source_prompt,
            lora_scale=lora_scale,
            clip_skip=clip_skip,
        )

        # 3. find zs and xts
        variance_noise_shape = (num_inversion_steps, *x0.shape)

        # intermediate latents
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)

        for t in reversed(timesteps):
            idx = num_inversion_steps - t_to_idx[int(t)] - 1
            noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
            xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t]))
        xts = torch.cat([x0.unsqueeze(0), xts], dim=0)

        self.scheduler.set_timesteps(len(self.scheduler.timesteps))
        # noise maps
        zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)

        with self.progress_bar(total=len(timesteps)) as progress_bar:
            for t in timesteps:
                idx = num_inversion_steps - t_to_idx[int(t)] - 1
                # 1. predict noise residual
                xt = xts[idx + 1]

                noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample

                if not source_prompt == "":
                    noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample
                    noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred)

                xtm1 = xts[idx]
                z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
                zs[idx] = z

                # correction to avoid error accumulation
                xts[idx] = xtm1_corrected

                progress_bar.update()

        self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1)
        zs = zs.flip(0)
        self.zs = zs

        return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)

    @torch.no_grad()
    def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
        image = self.image_processor.preprocess(
            image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
        resized = self.image_processor.postprocess(image=image, output_type="pil")

        if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
            logger.warning(
                "Your input images far exceed the default resolution of the underlying diffusion model. "
                "The output images may contain severe artifacts! "
                "Consider down-sampling the input using the `height` and `width` parameters"
            )
        image = image.to(dtype)

        x0 = self.vae.encode(image.to(self.device)).latent_dist.mode()
        x0 = x0.to(dtype)
        x0 = self.vae.config.scaling_factor * x0
        return x0, resized


def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    if scheduler.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred

    # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
    mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    if variance > 0.0:
        noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
    else:
        noise = torch.tensor([0.0]).to(latents.device)

    return noise, mu_xt + (eta * variance**0.5) * noise


def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    def first_order_update(model_output, sample):  # timestep, prev_timestep, sample):
        sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

        h = lambda_t - lambda_s

        mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output

        mu_xt = scheduler.dpm_solver_first_order_update(
            model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise
        return noise, prev_sample

    def second_order_update(model_output_list, sample):  # timestep_list, prev_timestep, sample):
        sigma_t, sigma_s0, sigma_s1 = (
            scheduler.sigmas[scheduler.step_index + 1],
            scheduler.sigmas[scheduler.step_index],
            scheduler.sigmas[scheduler.step_index - 1],
        )

        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)

        mu_xt = (
            (sigma_t / sigma_s0 * torch.exp(-h)) * sample
            + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
            + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise

        return noise, prev_sample

    if scheduler.step_index is None:
        scheduler._init_step_index(timestep)

    model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
    for i in range(scheduler.config.solver_order - 1):
        scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
    scheduler.model_outputs[-1] = model_output

    if scheduler.lower_order_nums < 1:
        noise, prev_sample = first_order_update(model_output, latents)
    else:
        noise, prev_sample = second_order_update(scheduler.model_outputs, latents)

    if scheduler.lower_order_nums < scheduler.config.solver_order:
        scheduler.lower_order_nums += 1

    # upon completion increase step index by one
    scheduler._step_index += 1

    return noise, prev_sample


def compute_noise(scheduler, *args):
    if isinstance(scheduler, DDIMScheduler):
        return compute_noise_ddim(scheduler, *args)
    elif (
        isinstance(scheduler, DPMSolverMultistepScheduler)
        and scheduler.config.algorithm_type == "sde-dpmsolver++"
        and scheduler.config.solver_order == 2
    ):
        return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
    else:
        raise NotImplementedError