linoyts HF staff commited on
Commit
0ab52e6
1 Parent(s): 1eb5467

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -8
app.py CHANGED
@@ -3,7 +3,6 @@ import spaces
3
  from clip_slider_pipeline import CLIPSliderFlux
4
  from diffusers import FluxPipeline
5
  import torch
6
- import time
7
  import numpy as np
8
  import cv2
9
  from PIL import Image
@@ -39,8 +38,7 @@ def generate(slider_x, prompt, seed, iterations, steps, guidance_scale,
39
  controlnet_scale= None, ip_adapter_scale=None,
40
 
41
  ):
42
-
43
- start_time = time.time()
44
  # check if avg diff for directions need to be re-calculated
45
  print("slider_x", slider_x)
46
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
@@ -49,9 +47,6 @@ def generate(slider_x, prompt, seed, iterations, steps, guidance_scale,
49
  avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
50
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
51
 
52
- print(f"direction time: {end_time - start_time:.2f} ms")
53
-
54
- start_time = time.time()
55
 
56
  if img2img_type=="controlnet canny" and img is not None:
57
  control_img = process_controlnet_img(img)
@@ -61,8 +56,6 @@ def generate(slider_x, prompt, seed, iterations, steps, guidance_scale,
61
  else: # text to image
62
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
63
 
64
- end_time = time.time()
65
- print(f"generation time: {end_time - start_time:.2f} ms")
66
 
67
  comma_concepts_x = ', '.join(slider_x)
68
 
 
3
  from clip_slider_pipeline import CLIPSliderFlux
4
  from diffusers import FluxPipeline
5
  import torch
 
6
  import numpy as np
7
  import cv2
8
  from PIL import Image
 
38
  controlnet_scale= None, ip_adapter_scale=None,
39
 
40
  ):
41
+
 
42
  # check if avg diff for directions need to be re-calculated
43
  print("slider_x", slider_x)
44
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
 
47
  avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
48
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
49
 
 
 
 
50
 
51
  if img2img_type=="controlnet canny" and img is not None:
52
  control_img = process_controlnet_img(img)
 
56
  else: # text to image
57
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
58
 
 
 
59
 
60
  comma_concepts_x = ', '.join(slider_x)
61