Spaces:
Running
on
Zero
Running
on
Zero
offloading to cpu
Browse files
app.py
CHANGED
@@ -10,7 +10,10 @@ flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.c
|
|
10 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=50)
|
11 |
|
12 |
@spaces.GPU
|
13 |
-
def generate(slider_x, slider_y, prompt,
|
|
|
|
|
|
|
14 |
|
15 |
# check if avg diff for directions need to be re-calculated
|
16 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
@@ -25,16 +28,18 @@ def generate(slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1,
|
|
25 |
comma_concepts_x = ', '.join(slider_x)
|
26 |
comma_concepts_y = ', '.join(slider_y)
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
32 |
|
33 |
-
def update_x(x,y,prompt,
|
34 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
35 |
return image
|
36 |
|
37 |
-
def update_y(x,y,prompt,
|
38 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
39 |
return image
|
40 |
|
@@ -69,8 +74,10 @@ with gr.Blocks(css=css) as demo:
|
|
69 |
y_concept_1 = gr.State("")
|
70 |
y_concept_2 = gr.State("")
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
@@ -84,10 +91,10 @@ with gr.Blocks(css=css) as demo:
|
|
84 |
output_image = gr.Image(elem_id="image_out")
|
85 |
|
86 |
submit.click(fn=generate,
|
87 |
-
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
88 |
-
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
89 |
-
x.change(fn=update_x, inputs=[x,y, prompt,
|
90 |
-
y.change(fn=update_y, inputs=[x,y, prompt,
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
|
|
10 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=50)
|
11 |
|
12 |
@spaces.GPU
|
13 |
+
def generate(slider_x, slider_y, prompt,
|
14 |
+
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
15 |
+
avg_diff_x_1, avg_diff_x_2,
|
16 |
+
avg_diff_y_1, avg_diff_y_2):
|
17 |
|
18 |
# check if avg diff for directions need to be re-calculated
|
19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
|
|
28 |
comma_concepts_x = ', '.join(slider_x)
|
29 |
comma_concepts_y = ', '.join(slider_y)
|
30 |
|
31 |
+
avg_diff_x_1 = clip_slider.avg_diff[0].cpu()
|
32 |
+
avg_diff_x_2 = clip_slider.avg_diff[1].cpu()
|
33 |
+
avg_diff_y_1 = clip_slider.avg_diff_2nd[0].cpu()
|
34 |
+
avg_diff_y_2 = clip_slider.avg_diff_2nd[1].cpu()
|
35 |
|
36 |
+
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
37 |
|
38 |
+
def update_x(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
39 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
40 |
return image
|
41 |
|
42 |
+
def update_y(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
43 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
44 |
return image
|
45 |
|
|
|
74 |
y_concept_1 = gr.State("")
|
75 |
y_concept_2 = gr.State("")
|
76 |
|
77 |
+
avg_diff_x_1 = gr.State()
|
78 |
+
avg_diff_x_2 = gr.State()
|
79 |
+
avg_diff_y_1 = gr.State()
|
80 |
+
avg_diff_y_2 = gr.State()
|
81 |
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
|
|
91 |
output_image = gr.Image(elem_id="image_out")
|
92 |
|
93 |
submit.click(fn=generate,
|
94 |
+
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
95 |
+
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
96 |
+
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
97 |
+
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
demo.launch()
|