linoyts HF staff commited on
Commit
dc2976a
1 Parent(s): be18665

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -27
app.py CHANGED
@@ -58,17 +58,13 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale
58
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
59
 
60
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
61
- avg_diff = t5_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
62
- avg_diff_0 = avg_diff[0].to(torch.float16)
63
- avg_diff_1 = avg_diff[1].to(torch.float16)
64
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
65
 
66
  print("avg_diff_0", avg_diff_0.dtype)
67
 
68
  if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
69
- avg_diff_2nd = t5_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
70
- avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16)
71
- avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16)
72
  y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
73
  end_time = time.time()
74
  print(f"direction time: {end_time - start_time:.2f} ms")
@@ -77,11 +73,11 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale
77
 
78
  if img2img_type=="controlnet canny" and img is not None:
79
  control_img = process_controlnet_img(img)
80
- image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
81
  elif img2img_type=="ip adapter" and img is not None:
82
- image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
83
  else: # text to image
84
- image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
85
 
86
  end_time = time.time()
87
  print(f"generation time: {end_time - start_time:.2f} ms")
@@ -89,20 +85,18 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale
89
  comma_concepts_x = ', '.join(slider_x)
90
  comma_concepts_y = ', '.join(slider_y)
91
 
92
- avg_diff_x_1 = avg_diff_0.cpu()
93
- avg_diff_x_2 = avg_diff_1.cpu()
94
- avg_diff_y_1 = avg_diff_2nd_0.cpu()
95
- avg_diff_y_2 = avg_diff_2nd_1.cpu()
96
 
97
- return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
98
 
99
  @spaces.GPU
100
  def update_scales(x,y,prompt,seed, steps, guidance_scale,
101
- avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
102
  img2img_type = None, img = None,
103
  controlnet_scale= None, ip_adapter_scale=None,):
104
- avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
105
- avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
106
  if img2img_type=="controlnet canny" and img is not None:
107
  control_img = process_controlnet_img(img)
108
  image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
@@ -112,23 +106,25 @@ def update_scales(x,y,prompt,seed, steps, guidance_scale,
112
  image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
113
  return image
114
 
 
 
115
  @spaces.GPU
116
  def update_x(x,y,prompt,seed, steps,
117
- avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
118
  img2img_type = None,
119
  img = None):
120
- avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
121
- avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
122
- image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
123
  return image
124
 
125
  @spaces.GPU
126
- def update_y(x,y,prompt, seed, steps,
127
- avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
128
- img2img_type = None,
129
- img = None):
130
- avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
131
- avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
132
  image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
133
  return image
134
 
 
58
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
59
 
60
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
61
+ avg_diff = t5_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
 
 
62
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
63
 
64
  print("avg_diff_0", avg_diff_0.dtype)
65
 
66
  if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
67
+ avg_diff_2nd = t5_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations).to(torch.float16)
 
 
68
  y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
69
  end_time = time.time()
70
  print(f"direction time: {end_time - start_time:.2f} ms")
 
73
 
74
  if img2img_type=="controlnet canny" and img is not None:
75
  control_img = process_controlnet_img(img)
76
+ image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
77
  elif img2img_type=="ip adapter" and img is not None:
78
+ image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
79
  else: # text to image
80
+ image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
81
 
82
  end_time = time.time()
83
  print(f"generation time: {end_time - start_time:.2f} ms")
 
85
  comma_concepts_x = ', '.join(slider_x)
86
  comma_concepts_y = ', '.join(slider_y)
87
 
88
+ avg_diff_x = avg_diff.cpu()
89
+ avg_diff_y = avg_diff_2nd.cpu()
 
 
90
 
91
+ return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, image
92
 
93
  @spaces.GPU
94
  def update_scales(x,y,prompt,seed, steps, guidance_scale,
95
+ avg_diff_x, avg_diff_y,
96
  img2img_type = None, img = None,
97
  controlnet_scale= None, ip_adapter_scale=None,):
98
+ avg_diff = avg_diff_x.cuda()
99
+ avg_diff_2nd = avg_diff_y.cuda()
100
  if img2img_type=="controlnet canny" and img is not None:
101
  control_img = process_controlnet_img(img)
102
  image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
 
106
  image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
107
  return image
108
 
109
+
110
+
111
  @spaces.GPU
112
  def update_x(x,y,prompt,seed, steps,
113
+ avg_diff_x, avg_diff_y,
114
  img2img_type = None,
115
  img = None):
116
+ avg_diff = avg_diff_x.cuda()
117
+ avg_diff_2nd = avg_diff_y.cuda()
118
+ image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
119
  return image
120
 
121
  @spaces.GPU
122
+ def update_y(x,y,prompt,seed, steps,
123
+ avg_diff_x, avg_diff_y,
124
+ img2img_type = None,
125
+ img = None):
126
+ avg_diff = avg_diff_x.cuda()
127
+ avg_diff_2nd = avg_diff_y.cuda()
128
  image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
129
  return image
130