Spaces:
Running
Running
File size: 23,638 Bytes
b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 f246119 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 b615923 131edb5 d799cb2 b615923 d799cb2 b615923 131edb5 b615923 131edb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import functools
from pathlib import Path
import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import EVAL_REQUESTS_PATH, QUEUE_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
EVAL_RESULTS_PATH = str(Path(__file__).resolve().parent / "results")
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
# restart_space()
pass
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
# precision_query: str,
# size_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, type_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def update_principles_table(
df,
*args: list,
) -> pd.DataFrame:
columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
for shown_column in args:
if isinstance(shown_column, gr.components.CheckboxGroup):
columns.extend(shown_column.value)
else:
columns.extend(shown_column)
# dummy column for querying (not shown)
columns.append("model_name_for_query")
return df[columns]
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
# filtered_df = filtered_df.drop_duplicates(
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
# )
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list
) -> pd.DataFrame:
# Show all models
# if show_deleted:
filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df.loc[mask]
return filtered_df
BENCHMARKS_PER_CATEGORY = {
"Robustness and Predictability": [
"MMLU: Robustness",
"BoolQ Contrast Set",
"IMDB Contrast Set",
"Monotonicity Checks",
"Self-Check Consistency",
],
"Cyberattack Resilience": [
"Goal Hijacking and Prompt Leakage",
"Rule Following"
],
"Training Data Suitability": [
"Toxicity of the Dataset",
"Bias of the Dataset"
],
"No Copyright Infringement": [
"Copyrighted Material Memorization"
],
"User Privacy Protection": [
"PII Extraction by Association"
],
"Capabilities, Performance, and Limitations": [
"General Knowledge: MMLU",
"Reasoning: AI2 Reasoning Challenge",
"Common Sense Reasoning: HellaSwag",
"Truthfulness: TruthfulQA MC2",
"Coding: HumanEval"
],
"Interpretability": ["Logit Calibration: BIG-Bench", "Self-Assessment: TriviaQA"],
"Disclosure of AI": ["Denying Human Presence"],
"Traceability": ["Watermark Reliability & Robustness"],
"Representation โ Absence of Bias": ["Representation Bias: RedditBias", "Prejudiced Answers: BBQ", "Biased Completions: BOLD"],
"Fairness โ Absence of Discrimination":["Income Fairness: DecodingTrust", "Recommendation Consistency: FaiRLLM"],
"Harmful Content and Toxicity": ["Toxic Completions of Benign Text: RealToxicityPrompts", "Following Harmful Instructions: AdvBench"]
}
def _wrap_link(value: str, url: str) -> str:
return f"<a href={url} target='_blank'>{value}</a>"
TEXT_PER_CATEGORY = {
"Robustness and Predictability": f"We evaluate the model on state-of-the-art benchmarks that measure its robustness under various input alterations [{_wrap_link('1', 'https://aclanthology.org/2020.findings-emnlp.117/')}], and the level of consistency in its answers [{_wrap_link('2', 'https://arxiv.org/abs/2306.09983')}, {_wrap_link('3', 'https://arxiv.org/abs/2305.15852')}].",
"Cyberattack Resilience": f"We consider the concrete threats concerning just the LLM in isolation, focusing on its resilience to jailbreaks and prompt injection attacks [{_wrap_link('1', 'https://arxiv.org/abs/2311.01011')}, {_wrap_link('2', 'https://arxiv.org/abs/2311.04235')}, {_wrap_link('3', 'https://arxiv.org/abs/2312.02119')}].",
"Training Data Suitability": "We evaluate the adequacy of the dataset [1], aiming to assess the potential of an LLM trained on this data to exhibit toxic or discriminatory behavior.",
"No Copyright Infringement": "We check if the model can be made to directly regurgitate content that is subject to the copyright of a third person.",
"User Privacy Protection": "We focus on cases of user privacy violation by the LLM itself, evaluating the modelโs ability to recover personal identifiable information that may have been included in the training data.",
"Capabilities, Performance, and Limitations": "To provide an overarching view, we assess the capabilities and limitations of the AI system by evaluating its performance on a wide range of tasks. We evaluate the model on widespread research benchmarks covering general knowledge [1], reasoning [2,3], truthfulness [4], and coding ability [5].",
"Interpretability": "The large body of machine learning interpretability research is often not easily applicable to large language models. While more work in this direction is needed, we use the existing easily-applicable methods to evaluate the modelโs ability to reason about its own correctness [1], and the degree to which the probabilities it outputs can be interpreted [3,4].",
"Disclosure of AI": "We require the language model to consistently deny that it is a human.",
"Traceability": "We require the presence of language model watermarking [1,2], and evaluate its viability, combining several important requirements that such schemes must satisfy to be practical.",
"Representation โ Absence of Bias": "We evaluate the tendency of the LLM to produce biased outputs, on three popular bias benchmarks [1,2,3].",
"Fairness โ Absence of Discrimination": "We evaluate the modelโs tendency to behave in a discriminatory way by comparing its behavior on different protected groups, using prominent fairness benchmarks [1,2].",
"Harmful Content and Toxicity": "We evaluate the modelsโ tendency to produce harmful or toxic content, leveraging two recent evaluation tools, RealToxicityPrompts and AdvBench [1,2]."
}
CATEGORIES_PER_PRINCIPLE = {
"Technical Robustness and Safety": ["Robustness and Predictability", "Cyberattack Resilience"],
"Privacy & Data Governance": ["Training Data Suitability", "No Copyright Infringement", "User Privacy Protection"],
"Transparency": ["Capabilities, Performance, and Limitations", "Interpretability", "Disclosure of AI", "Traceability"],
"Diversity, Non-discrimination & Fairness": ["Representation โ Absence of Bias", "Fairness โ Absence of Discrimination"],
"Social & Environmental Well-being": ["Harmful Content and Toxicity"]
}
ICON_PER_PRINCIPLE = {
"Technical Robustness and Safety": "https://compl-ai.org/icon_technical_robustness_and_safety.svg",
"Privacy & Data Governance": "https://compl-ai.org/icon_privacy_and_data_governance.svg",
"Transparency": "https://compl-ai.org/icon_transparency.svg",
"Diversity, Non-discrimination & Fairness": "https://compl-ai.org/icon_diversity_fairness.svg",
"Social & Environmental Well-being": "https://compl-ai.org/icon_social_environmental.svg",
}
def generate_benchmarks(principle: str):
with gr.Row():
gr.HTML(f"""
<h3 class="image_header principle_header"><img src="{ICON_PER_PRINCIPLE[principle]}" class="principle_icon"/>EU AI Act Principle: {principle}</h3>
""")
categories = CATEGORIES_PER_PRINCIPLE[principle]
with gr.Row(elem_classes=["technical_requirements", "border_mid"]):
for category in categories:
with gr.Column():
gr.HTML(
f"""
<div style="padding: 10px 20px;">
<h3 class="image_header"><img src="https://compl-ai.org/hex.svg" style="max-height:24px;" />{category}</h3>
<p>{TEXT_PER_CATEGORY[category]}</p>
</div>
"""
)
shown_columns = []
with gr.Row(elem_classes=["technical_requirements", "border_bot"]):
for category in categories:
with gr.Column():
shown_column = gr.CheckboxGroup(
show_label=False,
choices=BENCHMARKS_PER_CATEGORY[category],
value=BENCHMARKS_PER_CATEGORY[category],
interactive=True,
# elem_id="filter-columns-type",
)
shown_columns.append(shown_column)
with gr.Row():
df = update_principles_table(leaderboard_df, *shown_columns)
type_per_column = {c.name: c.type for c in fields(AutoEvalColumn)}
datatypes = [type_per_column[name] for name in df.columns]
leaderboard_table = gr.components.Dataframe(
value=df,
headers=df.columns.tolist(),
datatype=datatypes,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
for shown_column in shown_columns:
shown_column.change(
fn=functools.partial(update_principles_table, leaderboard_df),
inputs=shown_columns,
outputs=leaderboard_table,
# queue=True,
)
# Allows clicking on the full table column to trigger sorting
custom_js = """
function clickableTableHeaders() {
document.querySelectorAll(".table > thead > tr > th").forEach(th => {
th.addEventListener("click", () => {
const sortButton = th.querySelector(".sort-button"); // Selects the first child with class "sort-button"
if (sortButton) {
sortButton.click(); // Triggers the click event on the "sort-button" element
}
});
});
// Select all elements with the .table class
const tableElements = document.querySelectorAll('.table');
// Callback function to execute when mutations are observed
const mutationCallback = (mutationsList) => {
mutationsList.forEach((mutation) => {
if (mutation.target.nodeName == "TH" && mutation.addedNodes.length > 0) {
mutation.target.addEventListener("click", () => {
const sortButton = mutation.target.querySelector(".sort-button"); // Selects the first child with class "sort-button"
if (sortButton) {
sortButton.click(); // Triggers the click event on the "sort-button" element
}
});
}
});
};
// Options for the observer (which mutations to observe)
const observerOptions = {
childList: true, // Watch for additions/removals of child nodes
subtree: true // Watch for changes in descendants as well
};
// Create an instance of MutationObserver and pass in the callback function
const observer = new MutationObserver(mutationCallback);
// Observe each .table element
tableElements.forEach((tableElement) => {
observer.observe(tableElement, observerOptions);
});
}
"""
demo = gr.Blocks(
css=custom_css,
theme=gr.themes.Default(
font=gr.themes.GoogleFont("Open Sans", weights=(400, 500, 600))
),
js=custom_js,
)
with demo:
gr.HTML(TITLE)
with gr.Row(elem_id="intro"):
with gr.Column(scale=1, min_width=20, elem_classes="empty"):
pass
with gr.Column(scale=5):
gr.HTML(
"""
<h3 class="image_header"><img src="https://compl-ai.org/hex.svg" style="max-height:24px;" />Technical Interpretation of the EU AI Act</h3>
<p>We have interpreted the high-level regulatory requirements of the EU AI Act as concrete technical requirements. We further group requirements within six EU AI Act principles and label them as GPAI, GPAI+SR (Systemic Risk), and HR (High-Risk).</p>
<br/>
<a href="https://compl-ai.org/interpretation" class="button" target="_blank">Explore the Interpretation</a>
"""
)
with gr.Column(scale=5):
gr.HTML(
"""
<h3 class="image_header"><img src="https://compl-ai.org/checkmark.png" style="max-height:24px;" />Open-Source Benchmarking Suite</h3>
<p>The framework includes the ability to evaluate the technical requirements on a benchmarking suite containing 27 SOTA LLM benchmarks. The benchmark suite and technical interpretations are both open to community contributions.</p>
<br/>
<a href="https://github.com/compl-ai/compl-ai" class="button" target="_blank"><img src="https://compl-ai.org/icons/github-mark.svg" class="github_icon">GitHub Repo</a>
"""
)
with gr.Column(scale=1, min_width=20, elem_classes="empty"):
pass
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
Results", elem_id="llm-benchmark-tab-table", id=0):
for principle in CATEGORIES_PER_PRINCIPLE.keys():
generate_benchmarks(principle)
###
# with gr.Row():
# shown_columns = gr.CheckboxGroup(
# choices=[
# c.name
# for c in fields(AutoEvalColumn)
# if not c.hidden and not c.never_hidden and not c.dummy
# ],
# value=[
# c.name
# for c in fields(AutoEvalColumn)
# if c.displayed_by_default and not c.hidden and not c.never_hidden
# ],
# label="Select columns to show",
# elem_id="column-select",
# interactive=True,
# )
#
# with gr.Row():
# # with gr.Box(elem_id="box-filter"):
# filter_columns_type = gr.CheckboxGroup(
# label="Model types",
# choices=[t.to_str() for t in ModelType],
# value=[t.to_str() for t in ModelType],
# interactive=True,
# elem_id="filter-columns-type",
# )
#
# with gr.Row():
# search_bar = gr.Textbox(
# placeholder=" ๐ Search for your model (separate multiple queries with `;`) and press ENTER...",
# show_label=False,
# elem_id="search-bar",
# )
# # x = gr.Checkbox(show_label=False, label="foo")
#
# with gr.Row():
# # print(shown_columns.value)
# leaderboard_table = gr.components.Dataframe(
# value=leaderboard_df[
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
# + shown_columns.value
# ],
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
# datatype=TYPES,
# elem_id="leaderboard-table",
# interactive=False,
# visible=True,
# # column_widths=["2%", "30%", "10%", "10%", "12%"]
# )
#
# # Dummy leaderboard for handling the case when the user uses backspace key
# hidden_leaderboard_table_for_search = gr.components.Dataframe(
# value=original_df[COLS],
# headers=COLS,
# datatype=TYPES,
# visible=False,
# )
# search_bar.submit(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# # filter_columns_precision,
# # filter_columns_size,
# search_bar,
# ],
# leaderboard_table,
# )
# for selector in [shown_columns, filter_columns_type,
# ]:
# selector.change(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# # filter_columns_precision,
# # filter_columns_size,
# # deleted_models_visibility,
# search_bar,
# ],
# leaderboard_table,
# queue=True,
# )
with gr.TabItem("๐ Request Evaluation ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"Completed Evaluations ({len(finished_eval_queue_df)}) โ
",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("๐ Request an evaluation here", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# # )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit for evaluation")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
],
submission_result,
)
with gr.TabItem("๐ FAQ ", elem_id="llm-benchmark-tab-table", id=4):
with gr.Row():
# with gr.Accordion("๐ FAQ", open=True):
# with gr.Column(min_width=250):
gr.Markdown("""
#### What does N/A score mean?
An N/A score means that it was not possible to evaluate the benchmark for a given model.
This can happen for multiple reasons, such as:
- The benchmark requires access to model logits, but the model API doesn't provide them (or only provides them for specific strings),
- The model API refuses to provide any answer,
- We do not have access to the training data. """
)
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|