File size: 23,638 Bytes
b615923
 
 
131edb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b615923
131edb5
 
 
b615923
131edb5
 
 
 
 
 
 
 
b615923
 
131edb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f246119
 
 
131edb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
b615923
131edb5
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
 
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
b615923
 
 
 
 
 
 
 
131edb5
b615923
 
 
 
 
131edb5
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d799cb2
b615923
d799cb2
b615923
 
 
 
 
 
 
 
 
 
 
 
 
 
131edb5
 
 
 
 
 
 
 
 
 
 
b615923
 
 
131edb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import functools
from pathlib import Path

import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import EVAL_REQUESTS_PATH, QUEUE_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

EVAL_RESULTS_PATH = str(Path(__file__).resolve().parent / "results")


try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
    )
except Exception:
    # restart_space()
    pass

raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

(
    finished_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
        hidden_df: pd.DataFrame,
        columns: list,
        type_query: list,
        # precision_query: str,
        # size_query: list,
        query: str,
):
    filtered_df = filter_models(hidden_df, type_query)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def update_principles_table(
        df,
        *args: list,
) -> pd.DataFrame:
    columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
    for shown_column in args:
        if isinstance(shown_column, gr.components.CheckboxGroup):
            columns.extend(shown_column.value)
        else:
            columns.extend(shown_column)

    # dummy column for querying (not shown)
    columns.append("model_name_for_query")
    return df[columns]



def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
        ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            # filtered_df = filtered_df.drop_duplicates(
            #     subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            # )

    return filtered_df


def filter_models(
        df: pd.DataFrame, type_query: list
) -> pd.DataFrame:
    # Show all models
    # if show_deleted:
    filtered_df = df
    # else:  # Show only still on the hub models
    #     filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    # numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    # params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    # mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    # filtered_df = filtered_df.loc[mask]

    return filtered_df


BENCHMARKS_PER_CATEGORY = {
    "Robustness and Predictability": [
        "MMLU: Robustness",
        "BoolQ Contrast Set",
        "IMDB Contrast Set",
        "Monotonicity Checks",
        "Self-Check Consistency",
    ],
    "Cyberattack Resilience": [
        "Goal Hijacking and Prompt Leakage",
        "Rule Following"
    ],
    "Training Data Suitability": [
        "Toxicity of the Dataset",
        "Bias of the Dataset"
    ],
    "No Copyright Infringement": [
        "Copyrighted Material Memorization"
    ],
    "User Privacy Protection": [
        "PII Extraction by Association"
    ],
    "Capabilities, Performance, and Limitations": [
        "General Knowledge: MMLU",
        "Reasoning: AI2 Reasoning Challenge",
        "Common Sense Reasoning: HellaSwag",
        "Truthfulness: TruthfulQA MC2",
        "Coding: HumanEval"
    ],
    "Interpretability": ["Logit Calibration: BIG-Bench", "Self-Assessment: TriviaQA"],
    "Disclosure of AI": ["Denying Human Presence"],
    "Traceability": ["Watermark Reliability & Robustness"],
    "Representation โ€” Absence of Bias": ["Representation Bias: RedditBias", "Prejudiced Answers: BBQ", "Biased Completions: BOLD"],
    "Fairness โ€” Absence of Discrimination":["Income Fairness: DecodingTrust", "Recommendation Consistency: FaiRLLM"],
    "Harmful Content and Toxicity": ["Toxic Completions of Benign Text: RealToxicityPrompts", "Following Harmful Instructions: AdvBench"]
}

def _wrap_link(value: str, url: str) -> str:
    return f"<a href={url} target='_blank'>{value}</a>"

TEXT_PER_CATEGORY = {
    "Robustness and Predictability": f"We evaluate the model on state-of-the-art benchmarks that measure its robustness under various input alterations [{_wrap_link('1', 'https://aclanthology.org/2020.findings-emnlp.117/')}], and the level of consistency in its answers [{_wrap_link('2', 'https://arxiv.org/abs/2306.09983')}, {_wrap_link('3', 'https://arxiv.org/abs/2305.15852')}].",
    "Cyberattack Resilience": f"We consider the concrete threats concerning just the LLM in isolation, focusing on its resilience to jailbreaks and prompt injection attacks [{_wrap_link('1', 'https://arxiv.org/abs/2311.01011')}, {_wrap_link('2', 'https://arxiv.org/abs/2311.04235')}, {_wrap_link('3', 'https://arxiv.org/abs/2312.02119')}].",
    "Training Data Suitability": "We evaluate the adequacy of the dataset [1], aiming to assess the potential of an LLM trained on this data to exhibit toxic or discriminatory behavior.",
    "No Copyright Infringement": "We check if the model can be made to directly regurgitate content that is subject to the copyright of a third person.",
    "User Privacy Protection": "We focus on cases of user privacy violation by the LLM itself, evaluating the modelโ€™s ability to recover personal identifiable information that may have been included in the training data.",
    "Capabilities, Performance, and Limitations": "To provide an overarching view, we assess the capabilities and limitations of the AI system by evaluating its performance on a wide range of tasks. We evaluate the model on widespread research benchmarks covering general knowledge [1], reasoning [2,3], truthfulness [4], and coding ability [5].",
    "Interpretability": "The large body of machine learning interpretability research is often not easily applicable to large language models. While more work in this direction is needed, we use the existing easily-applicable methods to evaluate the modelโ€™s ability to reason about its own correctness [1], and the degree to which the probabilities it outputs can be interpreted [3,4].",
    "Disclosure of AI": "We require the language model to consistently deny that it is a human.",
    "Traceability": "We require the presence of language model watermarking [1,2], and evaluate its viability, combining several important requirements that such schemes must satisfy to be practical.",
    "Representation โ€” Absence of Bias": "We evaluate the tendency of the LLM to produce biased outputs, on three popular bias benchmarks [1,2,3].",
    "Fairness โ€” Absence of Discrimination": "We evaluate the modelโ€™s tendency to behave in a discriminatory way by comparing its behavior on different protected groups, using prominent fairness benchmarks [1,2].",
    "Harmful Content and Toxicity": "We evaluate the modelsโ€™ tendency to produce harmful or toxic content, leveraging two recent evaluation tools, RealToxicityPrompts and AdvBench [1,2]."
}

CATEGORIES_PER_PRINCIPLE = {
    "Technical Robustness and Safety": ["Robustness and Predictability", "Cyberattack Resilience"],
    "Privacy & Data Governance": ["Training Data Suitability", "No Copyright Infringement", "User Privacy Protection"],
    "Transparency": ["Capabilities, Performance, and Limitations", "Interpretability", "Disclosure of AI", "Traceability"],
    "Diversity, Non-discrimination & Fairness": ["Representation โ€” Absence of Bias", "Fairness โ€” Absence of Discrimination"],
    "Social & Environmental Well-being": ["Harmful Content and Toxicity"]
}

ICON_PER_PRINCIPLE = {
    "Technical Robustness and Safety": "https://compl-ai.org/icon_technical_robustness_and_safety.svg",
    "Privacy & Data Governance": "https://compl-ai.org/icon_privacy_and_data_governance.svg",
    "Transparency": "https://compl-ai.org/icon_transparency.svg",
    "Diversity, Non-discrimination & Fairness": "https://compl-ai.org/icon_diversity_fairness.svg",
    "Social & Environmental Well-being": "https://compl-ai.org/icon_social_environmental.svg",
}

def generate_benchmarks(principle: str):
    with gr.Row():
        gr.HTML(f"""
        <h3 class="image_header principle_header"><img src="{ICON_PER_PRINCIPLE[principle]}" class="principle_icon"/>EU AI Act Principle: {principle}</h3>
        """)

    categories = CATEGORIES_PER_PRINCIPLE[principle]

    with gr.Row(elem_classes=["technical_requirements", "border_mid"]):
        for category in categories:
            with gr.Column():
                gr.HTML(
                    f"""
                    <div style="padding: 10px 20px;">
                    <h3 class="image_header"><img src="https://compl-ai.org/hex.svg" style="max-height:24px;" />{category}</h3>
                    <p>{TEXT_PER_CATEGORY[category]}</p>
                    </div>
                    """
                )

    shown_columns = []
    with gr.Row(elem_classes=["technical_requirements", "border_bot"]):
        for category in categories:
            with gr.Column():
                shown_column = gr.CheckboxGroup(
                    show_label=False,
                    choices=BENCHMARKS_PER_CATEGORY[category],
                    value=BENCHMARKS_PER_CATEGORY[category],
                    interactive=True,
                    # elem_id="filter-columns-type",
                )
                shown_columns.append(shown_column)


    with gr.Row():
        df = update_principles_table(leaderboard_df, *shown_columns)
        type_per_column = {c.name: c.type for c in fields(AutoEvalColumn)}
        datatypes = [type_per_column[name] for name in df.columns]
        leaderboard_table = gr.components.Dataframe(
            value=df,
            headers=df.columns.tolist(),
            datatype=datatypes,
            elem_id="leaderboard-table",
            interactive=False,
            visible=True,
        )

        for shown_column in shown_columns:
            shown_column.change(
                fn=functools.partial(update_principles_table, leaderboard_df),
                inputs=shown_columns,
                outputs=leaderboard_table,
                # queue=True,
            )

# Allows clicking on the full table column to trigger sorting
custom_js = """
function clickableTableHeaders() {
    document.querySelectorAll(".table > thead > tr > th").forEach(th => {
      th.addEventListener("click", () => {
          const sortButton = th.querySelector(".sort-button"); // Selects the first child with class "sort-button"
          if (sortButton) {
            sortButton.click(); // Triggers the click event on the "sort-button" element
          }
      });
    });
    
    // Select all elements with the .table class
    const tableElements = document.querySelectorAll('.table');
    
    // Callback function to execute when mutations are observed
    const mutationCallback = (mutationsList) => {
        mutationsList.forEach((mutation) => {
            if (mutation.target.nodeName == "TH" && mutation.addedNodes.length > 0) {
                mutation.target.addEventListener("click", () => {
                  const sortButton = mutation.target.querySelector(".sort-button"); // Selects the first child with class "sort-button"
                  if (sortButton) {
                    sortButton.click(); // Triggers the click event on the "sort-button" element
                  }
              });
            }
        });
    };
    
    // Options for the observer (which mutations to observe)
    const observerOptions = {
      childList: true,         // Watch for additions/removals of child nodes
      subtree: true            // Watch for changes in descendants as well
    };
    
    // Create an instance of MutationObserver and pass in the callback function
    const observer = new MutationObserver(mutationCallback);
    
    // Observe each .table element
    tableElements.forEach((tableElement) => {
      observer.observe(tableElement, observerOptions);
    });
}
"""

demo = gr.Blocks(
    css=custom_css,
    theme=gr.themes.Default(
        font=gr.themes.GoogleFont("Open Sans", weights=(400, 500, 600))
    ),
    js=custom_js,
)

with demo:
    gr.HTML(TITLE)

    with gr.Row(elem_id="intro"):
        with gr.Column(scale=1, min_width=20, elem_classes="empty"):
            pass
        with gr.Column(scale=5):
            gr.HTML(
                """
                <h3 class="image_header"><img src="https://compl-ai.org/hex.svg" style="max-height:24px;" />Technical Interpretation of the EU AI Act</h3>
                <p>We have interpreted the high-level regulatory requirements of the EU AI Act as concrete technical requirements. We further group requirements within six EU AI Act principles and label them as GPAI, GPAI+SR (Systemic Risk), and HR (High-Risk).</p>
                <br/>
                <a href="https://compl-ai.org/interpretation" class="button" target="_blank">Explore the Interpretation</a>
                """
            )
        with gr.Column(scale=5):
            gr.HTML(
                """
                <h3 class="image_header"><img src="https://compl-ai.org/checkmark.png" style="max-height:24px;" />Open-Source Benchmarking Suite</h3>
                <p>The framework includes the ability to evaluate the technical requirements on a benchmarking suite containing 27 SOTA LLM benchmarks. The benchmark suite and technical interpretations are both open to community contributions.</p>
                <br/>
                <a href="https://github.com/compl-ai/compl-ai" class="button" target="_blank"><img src="https://compl-ai.org/icons/github-mark.svg" class="github_icon">GitHub Repo</a>
                """
            )
        with gr.Column(scale=1, min_width=20, elem_classes="empty"):
            pass

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("๐Ÿ… Results", elem_id="llm-benchmark-tab-table", id=0):

            for principle in CATEGORIES_PER_PRINCIPLE.keys():
                generate_benchmarks(principle)

            ###

            # with gr.Row():
            #     shown_columns = gr.CheckboxGroup(
            #         choices=[
            #             c.name
            #             for c in fields(AutoEvalColumn)
            #             if not c.hidden and not c.never_hidden and not c.dummy
            #         ],
            #         value=[
            #             c.name
            #             for c in fields(AutoEvalColumn)
            #             if c.displayed_by_default and not c.hidden and not c.never_hidden
            #         ],
            #         label="Select columns to show",
            #         elem_id="column-select",
            #         interactive=True,
            #     )
            #
            # with gr.Row():
            #     # with gr.Box(elem_id="box-filter"):
            #     filter_columns_type = gr.CheckboxGroup(
            #         label="Model types",
            #         choices=[t.to_str() for t in ModelType],
            #         value=[t.to_str() for t in ModelType],
            #         interactive=True,
            #         elem_id="filter-columns-type",
            #     )
            #
            # with gr.Row():
            #     search_bar = gr.Textbox(
            #         placeholder=" ๐Ÿ” Search for your model (separate multiple queries with `;`) and press ENTER...",
            #         show_label=False,
            #         elem_id="search-bar",
            #     )
            #     # x = gr.Checkbox(show_label=False, label="foo")
            #
            # with gr.Row():
            #     # print(shown_columns.value)
            #     leaderboard_table = gr.components.Dataframe(
            #         value=leaderboard_df[
            #             [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
            #             + shown_columns.value
            #             ],
            #         headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
            #         datatype=TYPES,
            #         elem_id="leaderboard-table",
            #         interactive=False,
            #         visible=True,
            #         # column_widths=["2%", "30%", "10%", "10%", "12%"]
            #     )
            #
            #     # Dummy leaderboard for handling the case when the user uses backspace key
            #     hidden_leaderboard_table_for_search = gr.components.Dataframe(
            #         value=original_df[COLS],
            #         headers=COLS,
            #         datatype=TYPES,
            #         visible=False,
            #     )
            #     search_bar.submit(
            #         update_table,
            #         [
            #             hidden_leaderboard_table_for_search,
            #             shown_columns,
            #             filter_columns_type,
            #             # filter_columns_precision,
            #             # filter_columns_size,
            #             search_bar,
            #         ],
            #         leaderboard_table,
            #     )
            #     for selector in [shown_columns, filter_columns_type,
            #                      ]:
            #         selector.change(
            #             update_table,
            #             [
            #                 hidden_leaderboard_table_for_search,
            #                 shown_columns,
            #                 filter_columns_type,
            #                 # filter_columns_precision,
            #                 # filter_columns_size,
            #                 # deleted_models_visibility,
            #                 search_bar,
            #             ],
            #             leaderboard_table,
            #             queue=True,
            #         )

        with gr.TabItem("๐Ÿš€ Request Evaluation ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                            f"Completed Evaluations ({len(finished_eval_queue_df)}) โœ…",
                            open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )


            with gr.Row():
                gr.Markdown("๐Ÿ‘‡ Request an evaluation here", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    # revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    # model_type = gr.Dropdown(
                    #     choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                    #     label="Model type",
                    #     multiselect=False,
                    #     value=None,
                    #     interactive=True,
                    # )

                # with gr.Column():
                    # precision = gr.Dropdown(
                    #     choices=[i.value.name for i in Precision if i != Precision.Unknown],
                    #     label="Precision",
                    #     multiselect=False,
                    #     value="float16",
                    #     interactive=True,
                    # # )
                    # weight_type = gr.Dropdown(
                    #     choices=[i.value.name for i in WeightType],
                    #     label="Weights type",
                    #     multiselect=False,
                    #     value="Original",
                    #     interactive=True,
                    # )
                    # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit for evaluation")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    # base_model_name_textbox,
                    # revision_name_textbox,
                    # precision,
                    # weight_type,
                    # model_type,
                ],
                submission_result,
            )

        with gr.TabItem("๐Ÿ“– FAQ ", elem_id="llm-benchmark-tab-table", id=4):

            with gr.Row():
                # with gr.Accordion("๐Ÿ“– FAQ", open=True):
                #     with gr.Column(min_width=250):
                gr.Markdown("""
                    #### What does N/A score mean?
        
                    An N/A score means that it was not possible to evaluate the benchmark for a given model.
        
                    This can happen for multiple reasons, such as:
        
                    - The benchmark requires access to model logits, but the model API doesn't provide them (or only provides them for specific strings),
                    - The model API refuses to provide any answer,
                    - We do not have access to the training data. """
                )

    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()