File size: 15,300 Bytes
dace3bd
257d43f
dace3bd
60cec7b
257d43f
dace3bd
 
 
 
 
 
 
 
257d43f
 
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
257d43f
60cec7b
1436945
60cec7b
 
 
 
 
257d43f
 
60cec7b
 
 
 
 
 
 
dace3bd
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
dace3bd
60cec7b
 
 
 
 
 
 
 
 
257d43f
 
 
 
60cec7b
 
 
 
 
 
 
 
 
257d43f
60cec7b
257d43f
60cec7b
 
 
257d43f
 
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257d43f
 
60cec7b
257d43f
60cec7b
 
 
257d43f
 
 
60cec7b
 
257d43f
60cec7b
 
 
257d43f
60cec7b
 
257d43f
 
 
 
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dace3bd
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dace3bd
60cec7b
 
dace3bd
257d43f
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
257d43f
60cec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257d43f
 
dace3bd
60cec7b
 
1436945
dace3bd
60cec7b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import logging
import os
import random
import re
import sys

import gradio as gr
import torch

from tools.i18n.i18n import I18nAuto, scan_language_list
from TTS_infer_pack.text_segmentation_method import get_method
from TTS_infer_pack.TTS import TTS, TTS_Config

now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))

logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)


if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]

is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()

gpt_path = os.environ.get("gpt_path", None)
sovits_path = os.environ.get("sovits_path", None)
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
bert_path = os.environ.get("bert_path", None)
version = os.environ.get("version", "v2")


language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)


# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'  # 确保直接启动推理UI时也能够设置。

device = "cuda" if torch.cuda.is_available() else "cpu"

dict_language_v2 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("粤语"): "all_yue",  # 全部按中文识别
    i18n("韩文"): "all_ko",  # 全部按韩文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("粤英混合"): "yue",  # 按粤英混合识别####不变
    i18n("韩英混合"): "ko",  # 按韩英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
    i18n("多语种混合(粤语)"): "auto_yue",  # 多语种启动切分识别语种
}
dict_language = dict_language_v2

cut_method = {
    i18n("不切"): "cut0",
    i18n("凑四句一切"): "cut1",
    i18n("凑50字一切"): "cut2",
    i18n("按中文句号。切"): "cut3",
    i18n("按英文句号.切"): "cut4",
    i18n("按标点符号切"): "cut5",
}

tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
tts_config.device = device
tts_config.is_half = is_half
tts_config.version = version
if gpt_path is not None:
    tts_config.t2s_weights_path = gpt_path
if sovits_path is not None:
    tts_config.vits_weights_path = sovits_path
if cnhubert_base_path is not None:
    tts_config.cnhuhbert_base_path = cnhubert_base_path
if bert_path is not None:
    tts_config.bert_base_path = bert_path

print(tts_config)
tts_pipeline = TTS(tts_config)
gpt_path = tts_config.t2s_weights_path
sovits_path = tts_config.vits_weights_path
version = tts_config.version


def inference(text, text_lang,
              ref_audio_path,
              aux_ref_audio_paths,
              prompt_text,
              prompt_lang, top_k,
              top_p, temperature,
              text_split_method, batch_size,
              speed_factor, ref_text_free,
              split_bucket, fragment_interval,
              seed, keep_random, parallel_infer,
              repetition_penalty
              ):

    seed = -1 if keep_random else seed
    actual_seed = seed if seed not in [-1,
                                       "", None] else random.randrange(1 << 32)
    inputs = {
        "text": text,
        "text_lang": dict_language[text_lang],
        "ref_audio_path": ref_audio_path,
        "aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
        "prompt_text": prompt_text if not ref_text_free else "",
        "prompt_lang": dict_language[prompt_lang],
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "text_split_method": cut_method[text_split_method],
        "batch_size": int(batch_size),
        "speed_factor": float(speed_factor),
        "split_bucket": split_bucket,
        "return_fragment": False,
        "fragment_interval": fragment_interval,
        "seed": actual_seed,
        "parallel_infer": parallel_infer,
        "repetition_penalty": repetition_penalty,
    }
    for item in tts_pipeline.run(inputs):
        yield item, actual_seed


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts


def change_choices():
    SoVITS_names, GPT_names = get_weights_names(
        GPT_weight_root, SoVITS_weight_root)
    return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}


pretrained_sovits_name = [
    "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
pretrained_gpt_name = ["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
                       "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
_ = [[], []]
for i in range(2):
    if os.path.exists(pretrained_gpt_name[i]):
        _[0].append(pretrained_gpt_name[i])
    if os.path.exists(pretrained_sovits_name[i]):
        _[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name, pretrained_sovits_name = _

SoVITS_weight_root = ["SoVITS_weights_v2", "SoVITS_weights"]
GPT_weight_root = ["GPT_weights_v2", "GPT_weights"]
for path in SoVITS_weight_root+GPT_weight_root:
    os.makedirs(path, exist_ok=True)


def get_weights_names(GPT_weight_root, SoVITS_weight_root):
    SoVITS_names = [i for i in pretrained_sovits_name]
    for path in SoVITS_weight_root:
        for name in os.listdir(path):
            if name.endswith(".pth"):
                SoVITS_names.append("%s/%s" % (path, name))
    GPT_names = [i for i in pretrained_gpt_name]
    for path in GPT_weight_root:
        for name in os.listdir(path):
            if name.endswith(".ckpt"):
                GPT_names.append("%s/%s" % (path, name))
    return SoVITS_names, GPT_names


SoVITS_names, GPT_names = get_weights_names(
    GPT_weight_root, SoVITS_weight_root)


def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
    tts_pipeline.init_vits_weights(sovits_path)
    global version, dict_language
    dict_language = dict_language_v2
    if prompt_language is not None and text_language is not None:
        if prompt_language in list(dict_language.keys()):
            prompt_text_update, prompt_language_update = {'__type__': 'update'},  {
                '__type__': 'update', 'value': prompt_language}
        else:
            prompt_text_update = {'__type__': 'update', 'value': ''}
            prompt_language_update = {
                '__type__': 'update', 'value': i18n("中文")}
        if text_language in list(dict_language.keys()):
            text_update, text_language_update = {'__type__': 'update'}, {
                '__type__': 'update', 'value': text_language}
        else:
            text_update = {'__type__': 'update', 'value': ''}
            text_language_update = {'__type__': 'update', 'value': i18n("中文")}
        return {'__type__': 'update', 'choices': list(dict_language.keys())}, {'__type__': 'update', 'choices': list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update


with gr.Blocks(title="GPT-SoVITS 張悦楷") as app:
    gr.Markdown(
        value=i18n(
            "張悦楷")
    )

    with gr.Column():
        # with gr.Group():
        gr.Markdown(value=i18n("模型切换"))
        with gr.Row():
            GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(
                GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
            SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(
                SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
            refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
            refresh_button.click(fn=change_choices, inputs=[], outputs=[
                                 SoVITS_dropdown, GPT_dropdown])

    with gr.Row():
        with gr.Column():
            gr.Markdown(value=i18n("*请上传并填写参考信息"))
            with gr.Row():
                inp_ref = gr.Audio(label=i18n(
                    "主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
                inp_refs = gr.File(label=i18n(
                    "辅参考音频(可选多个,或不选)"), file_count="multiple")
            prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
            with gr.Row():
                prompt_language = gr.Dropdown(
                    label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
                )
                with gr.Column():
                    ref_text_free = gr.Checkbox(label=i18n(
                        "开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
                    gr.Markdown(
                        i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))

        with gr.Column():
            gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
            text = gr.Textbox(label=i18n("需要合成的文本"),
                              value="", lines=20, max_lines=20)
            text_language = gr.Dropdown(
                label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
            )

    with gr.Group():
        gr.Markdown(value=i18n("推理设置"))
        with gr.Row():

            with gr.Column():
                batch_size = gr.Slider(minimum=1, maximum=200, step=1, label=i18n(
                    "batch_size"), value=20, interactive=True)
                fragment_interval = gr.Slider(minimum=0.01, maximum=1, step=0.01, label=i18n(
                    "分段间隔(秒)"), value=0.3, interactive=True)
                speed_factor = gr.Slider(
                    minimum=0.6, maximum=1.65, step=0.05, label="speed_factor", value=1.0, interactive=True)
                top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n(
                    "top_k"), value=5, interactive=True)
                top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n(
                    "top_p"), value=1, interactive=True)
                temperature = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n(
                    "temperature"), value=1, interactive=True)
                repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.05, label=i18n(
                    "重复惩罚"), value=1.35, interactive=True)
            with gr.Column():
                with gr.Row():
                    how_to_cut = gr.Dropdown(
                        label=i18n("怎么切"),
                        choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n(
                            "按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
                        value=i18n("凑四句一切"),
                        interactive=True, scale=1
                    )
                    parallel_infer = gr.Checkbox(label=i18n(
                        "并行推理"), value=True, interactive=True, show_label=True)
                    split_bucket = gr.Checkbox(label=i18n(
                        "数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True)

                with gr.Row():
                    seed = gr.Number(label=i18n("随机种子"), value=-1)
                    keep_random = gr.Checkbox(label=i18n(
                        "保持随机"), value=True, interactive=True, show_label=True)

                output = gr.Audio(label=i18n("输出的语音"))
                with gr.Row():
                    inference_button = gr.Button(
                        i18n("合成语音"), variant="primary")
                    stop_infer = gr.Button(i18n("终止合成"), variant="primary")

        inference_button.click(
            inference,
            [
                text, text_language, inp_ref, inp_refs,
                prompt_text, prompt_language,
                top_k, top_p, temperature,
                how_to_cut, batch_size,
                speed_factor, ref_text_free,
                split_bucket, fragment_interval,
                seed, keep_random, parallel_infer,
                repetition_penalty
            ],
            [output, seed],
        )
        stop_infer.click(tts_pipeline.stop, [], [])
        SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown, prompt_language, text_language], [
                               prompt_language, text_language, prompt_text, prompt_language, text, text_language])
        GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])

    with gr.Group():
        gr.Markdown(value=i18n(
            "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
        with gr.Row():
            text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
            with gr.Column():
                _how_to_cut = gr.Radio(
                    label=i18n("怎么切"),
                    choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n(
                        "按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
                    value=i18n("凑四句一切"),
                    interactive=True,
                )
                cut_text = gr.Button(i18n("切分"), variant="primary")

            def to_cut(text_inp, how_to_cut):
                if len(text_inp.strip()) == 0 or text_inp == []:
                    return ""
                method = get_method(cut_method[how_to_cut])
                return method(text_inp)

            text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
            cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
        gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))

if __name__ == '__main__':
    app.queue().launch(
        server_name="0.0.0.0",
        inbrowser=True,
        share=True,
        server_port=9876,
        quiet=True,
    )