File size: 18,853 Bytes
31adf61 41fae1a 38890bc dace3bd 257d43f dace3bd 60cec7b 257d43f dace3bd e495944 dace3bd 257d43f 60cec7b 257d43f 60cec7b 1436945 60cec7b 257d43f 60cec7b dace3bd 60cec7b 688fbf8 60cec7b dace3bd 60cec7b 257d43f 60cec7b 257d43f 60cec7b 257d43f 60cec7b 257d43f e495944 41fae1a 60cec7b 41fae1a 257d43f 60cec7b 257d43f 41fae1a 60cec7b 257d43f 60cec7b 257d43f 60cec7b 257d43f 60cec7b 257d43f 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b dace3bd 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 41fae1a 60cec7b 38890bc 02431e2 688fbf8 02431e2 60cec7b 02431e2 60cec7b 41fae1a 02431e2 41fae1a 60cec7b 02431e2 41fae1a 02431e2 41fae1a 60cec7b 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 41fae1a 02431e2 6673fc0 02431e2 60cec7b 257d43f 41fae1a 38890bc 02431e2 60cec7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
"""
If running this app in WSL2, you need to run the following command in the WSL2 terminal to get the IP address of the WSL2 instance:
ip addr show eth0 | grep "inet\b" | awk '{print $2}' | cut -d/ -f1
"""
import asyncio
import logging
import os
import random
import re
import sys
import gradio as gr
import spaces
import torch
from tools.i18n.i18n import I18nAuto, scan_language_list
from TTS_infer_pack.text_segmentation_method import get_method
from TTS_infer_pack.TTS import TTS, TTS_Config
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
gpt_path = os.environ.get("gpt_path", None)
sovits_path = os.environ.get("sovits_path", None)
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
bert_path = os.environ.get("bert_path", None)
version = os.environ.get("version", "v2")
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
device = "cuda" if torch.cuda.is_available() else "cpu"
dict_language_v2 = {
i18n("粵語"): "yue",
# i18n("中文"): "all_zh", # 全部按中文识别
# i18n("英文"): "en", # 全部按英文识别#######不变
# i18n("日文"): "all_ja", # 全部按日文识别
# i18n("粤语"): "all_yue", # 全部按中文识别
# i18n("韩文"): "all_ko", # 全部按韩文识别
# i18n("中英混合"): "zh", # 按中英混合识别####不变
# i18n("日英混合"): "ja", # 按日英混合识别####不变
# i18n("粤英混合"): "yue", # 按粤英混合识别####不变
# i18n("韩英混合"): "ko", # 按韩英混合识别####不变
# i18n("多语种混合"): "auto", # 多语种启动切分识别语种
# i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种
}
dict_language = dict_language_v2
cut_method = {
i18n("不切"): "cut0",
i18n("凑四句一切"): "cut1",
i18n("凑50字一切"): "cut2",
i18n("按中文句号。切"): "cut3",
i18n("按英文句号.切"): "cut4",
i18n("按标点符号切"): "cut5",
}
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
tts_config.device = device
tts_config.is_half = is_half
tts_config.version = version
if gpt_path is not None:
tts_config.t2s_weights_path = gpt_path
if sovits_path is not None:
tts_config.vits_weights_path = sovits_path
if cnhubert_base_path is not None:
tts_config.cnhuhbert_base_path = cnhubert_base_path
if bert_path is not None:
tts_config.bert_base_path = bert_path
print(tts_config)
tts_pipeline = TTS(tts_config)
gpt_path = tts_config.t2s_weights_path
sovits_path = tts_config.vits_weights_path
version = tts_config.version
@spaces.GPU
def inference(
text,
text_lang,
ref_audio_path,
aux_ref_audio_paths,
prompt_text,
prompt_lang,
top_k,
top_p,
temperature,
text_split_method,
batch_size,
speed_factor,
ref_text_free,
split_bucket,
fragment_interval,
seed,
keep_random,
parallel_infer,
repetition_penalty,
):
seed = -1 if keep_random else seed
actual_seed = seed if seed not in [-1, "", None] else random.randrange(1 << 32)
inputs = {
"text": text,
"text_lang": dict_language[text_lang],
"ref_audio_path": ref_audio_path,
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths]
if aux_ref_audio_paths is not None
else [],
"prompt_text": prompt_text if not ref_text_free else "",
"prompt_lang": dict_language[prompt_lang],
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"text_split_method": cut_method[text_split_method],
"batch_size": int(batch_size),
"speed_factor": float(speed_factor),
"split_bucket": split_bucket,
"return_fragment": False,
"fragment_interval": fragment_interval,
"seed": actual_seed,
"parallel_infer": parallel_infer,
"repetition_penalty": repetition_penalty,
}
for item in tts_pipeline.run(inputs):
yield item, actual_seed
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split("(\d+)", s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def change_choices():
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
return {
"choices": sorted(SoVITS_names, key=custom_sort_key),
"__type__": "update",
}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
pretrained_sovits_name = [
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
"GPT_SoVITS/pretrained_models/s2G488k.pth",
]
pretrained_gpt_name = [
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
]
_ = [[], []]
for i in range(2):
if os.path.exists(pretrained_gpt_name[i]):
_[0].append(pretrained_gpt_name[i])
if os.path.exists(pretrained_sovits_name[i]):
_[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name, pretrained_sovits_name = _
SoVITS_weight_root = ["SoVITS_weights_v2", "SoVITS_weights"]
GPT_weight_root = ["GPT_weights_v2", "GPT_weights"]
for path in SoVITS_weight_root + GPT_weight_root:
os.makedirs(path, exist_ok=True)
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
SoVITS_names = [i for i in pretrained_sovits_name]
for path in SoVITS_weight_root:
for name in os.listdir(path):
if name.endswith(".pth"):
SoVITS_names.append("%s/%s" % (path, name))
GPT_names = [i for i in pretrained_gpt_name]
for path in GPT_weight_root:
for name in os.listdir(path):
if name.endswith(".ckpt"):
GPT_names.append("%s/%s" % (path, name))
return SoVITS_names, GPT_names
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
tts_pipeline.init_vits_weights(sovits_path)
global version, dict_language
dict_language = dict_language_v2
if prompt_language is not None and text_language is not None:
if prompt_language in list(dict_language.keys()):
prompt_text_update, prompt_language_update = (
{"__type__": "update"},
{"__type__": "update", "value": prompt_language},
)
else:
prompt_text_update = {"__type__": "update", "value": ""}
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
if text_language in list(dict_language.keys()):
text_update, text_language_update = (
{"__type__": "update"},
{"__type__": "update", "value": text_language},
)
else:
text_update = {"__type__": "update", "value": ""}
text_language_update = {"__type__": "update", "value": i18n("中文")}
return (
{"__type__": "update", "choices": list(dict_language.keys())},
{"__type__": "update", "choices": list(dict_language.keys())},
prompt_text_update,
prompt_language_update,
text_update,
text_language_update,
)
async def create_app():
with gr.Blocks(title="GPT-SoVITS 張悦楷") as app:
gr.Markdown(
value="""
# 張悦楷 GPT-SoVITS 語音合成器
"""
)
with gr.Column():
# with gr.Group():
gr.Markdown(value=i18n("模型切换"))
with gr.Row():
GPT_dropdown = gr.Dropdown(
label=i18n("GPT模型列表"),
choices=sorted(GPT_names, key=custom_sort_key),
value=gpt_path,
interactive=True,
)
SoVITS_dropdown = gr.Dropdown(
label=i18n("SoVITS模型列表"),
choices=sorted(SoVITS_names, key=custom_sort_key),
value=sovits_path,
interactive=True,
)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[SoVITS_dropdown, GPT_dropdown],
)
with gr.Row():
with gr.Column():
gr.Markdown(value=i18n("*请上传并填写参考信息"))
with gr.Row():
inp_ref = gr.Audio(
label="上傳 3-10 秒長嘅參考音頻", type="filepath"
)
inp_refs = gr.File(
label=i18n("辅参考音频(可选多个,或不选)"),
file_count="multiple",
)
prompt_text = gr.Textbox(
label=i18n("主参考音频的文本"), value="", lines=2
)
with gr.Row():
prompt_language = gr.Dropdown(
label=i18n("主参考音频的语种"),
choices=list(dict_language.keys()),
value=i18n("中文"),
)
with gr.Column():
ref_text_free = gr.Checkbox(
label=i18n(
"开启无参考文本模式。不填参考文本亦相当于开启。"
),
value=False,
interactive=True,
show_label=True,
)
gr.Markdown(
i18n(
"使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"
)
)
with gr.Column():
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
text = gr.Textbox(
label=i18n("需要合成的文本"), value="", lines=20, max_lines=20
)
text_language = gr.Dropdown(
label=i18n("需要合成的文本的语种"),
choices=list(dict_language.keys()),
value=i18n("中文"),
)
with gr.Group():
gr.Markdown(value=i18n("推理设置"))
with gr.Row():
with gr.Column():
batch_size = gr.Slider(
minimum=1,
maximum=200,
step=1,
label=i18n("batch_size"),
value=20,
interactive=True,
)
fragment_interval = gr.Slider(
minimum=0.01,
maximum=1,
step=0.01,
label=i18n("分段间隔(秒)"),
value=0.3,
interactive=True,
)
speed_factor = gr.Slider(
minimum=0.6,
maximum=1.65,
step=0.05,
label="speed_factor",
value=1.0,
interactive=True,
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
label=i18n("top_k"),
value=5,
interactive=True,
)
top_p = gr.Slider(
minimum=0,
maximum=1,
step=0.05,
label=i18n("top_p"),
value=1,
interactive=True,
)
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.05,
label=i18n("temperature"),
value=1,
interactive=True,
)
repetition_penalty = gr.Slider(
minimum=0,
maximum=2,
step=0.05,
label=i18n("重复惩罚"),
value=1.35,
interactive=True,
)
with gr.Column():
with gr.Row():
how_to_cut = gr.Dropdown(
label=i18n("怎么切"),
choices=[
i18n("不切"),
i18n("凑四句一切"),
i18n("凑50字一切"),
i18n("按中文句号。切"),
i18n("按英文句号.切"),
i18n("按标点符号切"),
],
value=i18n("凑四句一切"),
interactive=True,
scale=1,
)
parallel_infer = gr.Checkbox(
label=i18n("并行推理"),
value=True,
interactive=True,
show_label=True,
)
split_bucket = gr.Checkbox(
label=i18n("数据分桶(并行推理时会降低一点计算量)"),
value=True,
interactive=True,
show_label=True,
)
with gr.Row():
seed = gr.Number(label=i18n("随机种子"), value=-1)
keep_random = gr.Checkbox(
label=i18n("保持随机"),
value=True,
interactive=True,
show_label=True,
)
output = gr.Audio(label=i18n("输出的语音"))
with gr.Row():
inference_button = gr.Button(
i18n("合成语音"), variant="primary"
)
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
inference_button.click(
inference,
[
text,
text_language,
inp_ref,
inp_refs,
prompt_text,
prompt_language,
top_k,
top_p,
temperature,
how_to_cut,
batch_size,
speed_factor,
ref_text_free,
split_bucket,
fragment_interval,
seed,
keep_random,
parallel_infer,
repetition_penalty,
],
[output, seed],
)
stop_infer.click(tts_pipeline.stop, [], [])
SoVITS_dropdown.change(
change_sovits_weights,
[SoVITS_dropdown, prompt_language, text_language],
[
prompt_language,
text_language,
prompt_text,
prompt_language,
text,
text_language,
],
)
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])
# with gr.Group():
# gr.Markdown(value=i18n(
# "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
# with gr.Row():
# text_inp = gr.Textbox(label=i18n(
# "需要合成的切分前文本"), value="", lines=4)
# with gr.Column():
# _how_to_cut = gr.Radio(
# label=i18n("怎么切"),
# choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n(
# "按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
# value=i18n("凑四句一切"),
# interactive=True,
# )
# cut_text = gr.Button(i18n("切分"), variant="primary")
# def to_cut(text_inp, how_to_cut):
# if len(text_inp.strip()) == 0 or text_inp == []:
# return ""
# method = get_method(cut_method[how_to_cut])
# return method(text_inp)
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
# cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
# gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
return app
if __name__ == "__main__":
app = asyncio.run(create_app())
app.launch(
# server_name="0.0.0.0",
# inbrowser=True,
# share=True,
# server_port=9876,
# quiet=True,
)
|