|
import gc |
|
import math |
|
import os |
|
import random |
|
import sys |
|
import traceback |
|
from copy import deepcopy |
|
from time import time as ttime |
|
from typing import Generator, List, Tuple, Union |
|
|
|
import ffmpeg |
|
import librosa |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import yaml |
|
from tqdm import tqdm |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
|
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from feature_extractor.cnhubert import CNHubert |
|
from module.mel_processing import spectrogram_torch |
|
from module.models import SynthesizerTrn |
|
from tools.i18n.i18n import I18nAuto, scan_language_list |
|
from tools.my_utils import load_audio |
|
from TTS_infer_pack.text_segmentation_method import splits |
|
from TTS_infer_pack.TextPreprocessor import TextPreprocessor |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
language = os.environ.get("language", "Auto") |
|
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language |
|
i18n = I18nAuto(language=language) |
|
|
|
|
|
""" |
|
custom: |
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large |
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base |
|
device: cpu |
|
is_half: false |
|
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt |
|
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth |
|
version: v2 |
|
default: |
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large |
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base |
|
device: cpu |
|
is_half: false |
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt |
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth |
|
version: v1 |
|
default_v2: |
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large |
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base |
|
device: cuda |
|
is_half: false |
|
t2s_weights_path: GPT_weights_v2/21hr-e15.ckpt |
|
version: v2 |
|
vits_weights_path: SoVITS_weights_v2/21hr_e13_s10621.pth |
|
|
|
""" |
|
|
|
|
|
def set_seed(seed: int): |
|
seed = int(seed) |
|
seed = seed if seed != -1 else random.randrange(1 << 32) |
|
print(f"Set seed to {seed}") |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
try: |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
except: |
|
pass |
|
return seed |
|
|
|
|
|
class TTS_Config: |
|
default_configs = { |
|
"default": { |
|
"device": "cpu", |
|
"is_half": False, |
|
"version": "v1", |
|
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", |
|
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", |
|
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", |
|
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", |
|
}, |
|
"default_v2": { |
|
"device": "cpu", |
|
"is_half": False, |
|
"version": "v2", |
|
"t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", |
|
"vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", |
|
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", |
|
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", |
|
}, |
|
} |
|
configs: dict = None |
|
v1_languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] |
|
v2_languages: list = ["auto", "auto_yue", "en", "zh", "ja", |
|
"yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"] |
|
languages: list = v2_languages |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, configs: Union[dict, str] = None): |
|
|
|
|
|
configs_base_path: str = "GPT_SoVITS/configs/" |
|
os.makedirs(configs_base_path, exist_ok=True) |
|
self.configs_path: str = os.path.join( |
|
configs_base_path, "tts_infer.yaml") |
|
|
|
if configs in ["", None]: |
|
if not os.path.exists(self.configs_path): |
|
self.save_configs() |
|
print(f"Create default config file at {self.configs_path}") |
|
configs: dict = deepcopy(self.default_configs) |
|
|
|
if isinstance(configs, str): |
|
self.configs_path = configs |
|
configs: dict = self._load_configs(self.configs_path) |
|
|
|
assert isinstance(configs, dict) |
|
version = configs.get("version", "v2").lower() |
|
assert version in ["v1", "v2"] |
|
self.default_configs["default"] = configs.get( |
|
"default", self.default_configs["default"]) |
|
self.default_configs["default_v2"] = configs.get( |
|
"default_v2", self.default_configs["default_v2"]) |
|
|
|
default_config_key = "default"if version == "v1" else "default_v2" |
|
self.configs: dict = configs.get("custom", deepcopy( |
|
self.default_configs[default_config_key])) |
|
|
|
self.device = self.configs.get("device", torch.device("cpu")) |
|
self.is_half = self.configs.get("is_half", False) |
|
self.version = version |
|
self.t2s_weights_path = self.configs.get("t2s_weights_path", None) |
|
self.vits_weights_path = self.configs.get("vits_weights_path", None) |
|
self.bert_base_path = self.configs.get("bert_base_path", None) |
|
self.cnhuhbert_base_path = self.configs.get( |
|
"cnhuhbert_base_path", None) |
|
self.languages = self.v2_languages if self.version == "v2" else self.v1_languages |
|
|
|
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): |
|
self.t2s_weights_path = self.default_configs[default_config_key]['t2s_weights_path'] |
|
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") |
|
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): |
|
self.vits_weights_path = self.default_configs[default_config_key]['vits_weights_path'] |
|
print(f"fall back to default vits_weights_path: {self.vits_weights_path}") |
|
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): |
|
self.bert_base_path = self.default_configs[default_config_key]['bert_base_path'] |
|
print(f"fall back to default bert_base_path: {self.bert_base_path}") |
|
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): |
|
self.cnhuhbert_base_path = self.default_configs[default_config_key]['cnhuhbert_base_path'] |
|
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") |
|
self.update_configs() |
|
|
|
self.max_sec = None |
|
self.hz: int = 50 |
|
self.semantic_frame_rate: str = "25hz" |
|
self.segment_size: int = 20480 |
|
self.filter_length: int = 2048 |
|
self.sampling_rate: int = 32000 |
|
self.hop_length: int = 640 |
|
self.win_length: int = 2048 |
|
self.n_speakers: int = 300 |
|
|
|
def _load_configs(self, configs_path: str) -> dict: |
|
if os.path.exists(configs_path): |
|
... |
|
else: |
|
print(i18n("路径不存在,使用默认配置")) |
|
self.save_configs(configs_path) |
|
with open(configs_path, 'r') as f: |
|
configs = yaml.load(f, Loader=yaml.FullLoader) |
|
|
|
return configs |
|
|
|
def save_configs(self, configs_path: str = None) -> None: |
|
configs = deepcopy(self.default_configs) |
|
if self.configs is not None: |
|
configs["custom"] = self.update_configs() |
|
|
|
if configs_path is None: |
|
configs_path = self.configs_path |
|
with open(configs_path, 'w') as f: |
|
yaml.dump(configs, f) |
|
|
|
def update_configs(self): |
|
self.config = { |
|
"device": str(self.device), |
|
"is_half": self.is_half, |
|
"version": self.version, |
|
"t2s_weights_path": self.t2s_weights_path, |
|
"vits_weights_path": self.vits_weights_path, |
|
"bert_base_path": self.bert_base_path, |
|
"cnhuhbert_base_path": self.cnhuhbert_base_path, |
|
} |
|
return self.config |
|
|
|
def update_version(self, version: str) -> None: |
|
self.version = version |
|
self.languages = self.v2_languages if self.version == "v2" else self.v1_languages |
|
|
|
def __str__(self): |
|
self.configs = self.update_configs() |
|
string = "TTS Config".center(100, '-') + '\n' |
|
for k, v in self.configs.items(): |
|
string += f"{str(k).ljust(20)}: {str(v)}\n" |
|
string += "-" * 100 + '\n' |
|
return string |
|
|
|
def __repr__(self): |
|
return self.__str__() |
|
|
|
def __hash__(self): |
|
return hash(self.configs_path) |
|
|
|
def __eq__(self, other): |
|
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path |
|
|
|
|
|
class TTS: |
|
def __init__(self, configs: Union[dict, str, TTS_Config]): |
|
if isinstance(configs, TTS_Config): |
|
self.configs = configs |
|
else: |
|
self.configs: TTS_Config = TTS_Config(configs) |
|
|
|
self.t2s_model: Text2SemanticLightningModule = None |
|
self.vits_model: SynthesizerTrn = None |
|
self.bert_tokenizer: AutoTokenizer = None |
|
self.bert_model: AutoModelForMaskedLM = None |
|
self.cnhuhbert_model: CNHubert = None |
|
|
|
self._init_models() |
|
|
|
self.text_preprocessor: TextPreprocessor = \ |
|
TextPreprocessor(self.bert_model, |
|
self.bert_tokenizer, |
|
self.configs.device) |
|
|
|
self.prompt_cache: dict = { |
|
"ref_audio_path": None, |
|
"prompt_semantic": None, |
|
"refer_spec": [], |
|
"prompt_text": None, |
|
"prompt_lang": None, |
|
"phones": None, |
|
"bert_features": None, |
|
"norm_text": None, |
|
"aux_ref_audio_paths": [], |
|
} |
|
|
|
self.stop_flag: bool = False |
|
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32 |
|
|
|
def _init_models(self,): |
|
self.init_t2s_weights(self.configs.t2s_weights_path) |
|
self.init_vits_weights(self.configs.vits_weights_path) |
|
self.init_bert_weights(self.configs.bert_base_path) |
|
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) |
|
|
|
|
|
def init_cnhuhbert_weights(self, base_path: str): |
|
print(f"Loading CNHuBERT weights from {base_path}") |
|
self.cnhuhbert_model = CNHubert(base_path) |
|
self.cnhuhbert_model = self.cnhuhbert_model.eval() |
|
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) |
|
if self.configs.is_half and str(self.configs.device) != "cpu": |
|
self.cnhuhbert_model = self.cnhuhbert_model.half() |
|
|
|
def init_bert_weights(self, base_path: str): |
|
print(f"Loading BERT weights from {base_path}") |
|
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) |
|
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) |
|
self.bert_model = self.bert_model.eval() |
|
self.bert_model = self.bert_model.to(self.configs.device) |
|
if self.configs.is_half and str(self.configs.device) != "cpu": |
|
self.bert_model = self.bert_model.half() |
|
|
|
def init_vits_weights(self, weights_path: str): |
|
print(f"Loading VITS weights from {weights_path}") |
|
self.configs.vits_weights_path = weights_path |
|
dict_s2 = torch.load(weights_path, map_location=self.configs.device) |
|
hps = dict_s2["config"] |
|
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: |
|
self.configs.update_version("v1") |
|
else: |
|
self.configs.update_version("v2") |
|
self.configs.save_configs() |
|
|
|
hps["model"]["version"] = self.configs.version |
|
self.configs.filter_length = hps["data"]["filter_length"] |
|
self.configs.segment_size = hps["train"]["segment_size"] |
|
self.configs.sampling_rate = hps["data"]["sampling_rate"] |
|
self.configs.hop_length = hps["data"]["hop_length"] |
|
self.configs.win_length = hps["data"]["win_length"] |
|
self.configs.n_speakers = hps["data"]["n_speakers"] |
|
self.configs.semantic_frame_rate = "25hz" |
|
kwargs = hps["model"] |
|
vits_model = SynthesizerTrn( |
|
self.configs.filter_length // 2 + 1, |
|
self.configs.segment_size // self.configs.hop_length, |
|
n_speakers=self.configs.n_speakers, |
|
**kwargs |
|
) |
|
|
|
if hasattr(vits_model, "enc_q"): |
|
del vits_model.enc_q |
|
|
|
vits_model = vits_model.to(self.configs.device) |
|
vits_model = vits_model.eval() |
|
vits_model.load_state_dict(dict_s2["weight"], strict=False) |
|
self.vits_model = vits_model |
|
if self.configs.is_half and str(self.configs.device) != "cpu": |
|
self.vits_model = self.vits_model.half() |
|
|
|
def init_t2s_weights(self, weights_path: str): |
|
print(f"Loading Text2Semantic weights from {weights_path}") |
|
self.configs.t2s_weights_path = weights_path |
|
self.configs.save_configs() |
|
self.configs.hz = 50 |
|
dict_s1 = torch.load(weights_path, map_location=self.configs.device) |
|
config = dict_s1["config"] |
|
self.configs.max_sec = config["data"]["max_sec"] |
|
t2s_model = Text2SemanticLightningModule( |
|
config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
t2s_model = t2s_model.to(self.configs.device) |
|
t2s_model = t2s_model.eval() |
|
self.t2s_model = t2s_model |
|
if self.configs.is_half and str(self.configs.device) != "cpu": |
|
self.t2s_model = self.t2s_model.half() |
|
|
|
def enable_half_precision(self, enable: bool = True, save: bool = True): |
|
''' |
|
To enable half precision for the TTS model. |
|
Args: |
|
enable: bool, whether to enable half precision. |
|
|
|
''' |
|
if str(self.configs.device) == "cpu" and enable: |
|
print("Half precision is not supported on CPU.") |
|
return |
|
|
|
self.configs.is_half = enable |
|
self.precision = torch.float16 if enable else torch.float32 |
|
if save: |
|
self.configs.save_configs() |
|
if enable: |
|
if self.t2s_model is not None: |
|
self.t2s_model = self.t2s_model.half() |
|
if self.vits_model is not None: |
|
self.vits_model = self.vits_model.half() |
|
if self.bert_model is not None: |
|
self.bert_model = self.bert_model.half() |
|
if self.cnhuhbert_model is not None: |
|
self.cnhuhbert_model = self.cnhuhbert_model.half() |
|
else: |
|
if self.t2s_model is not None: |
|
self.t2s_model = self.t2s_model.float() |
|
if self.vits_model is not None: |
|
self.vits_model = self.vits_model.float() |
|
if self.bert_model is not None: |
|
self.bert_model = self.bert_model.float() |
|
if self.cnhuhbert_model is not None: |
|
self.cnhuhbert_model = self.cnhuhbert_model.float() |
|
|
|
def set_device(self, device: torch.device, save: bool = True): |
|
''' |
|
To set the device for all models. |
|
Args: |
|
device: torch.device, the device to use for all models. |
|
''' |
|
self.configs.device = device |
|
if save: |
|
self.configs.save_configs() |
|
if self.t2s_model is not None: |
|
self.t2s_model = self.t2s_model.to(device) |
|
if self.vits_model is not None: |
|
self.vits_model = self.vits_model.to(device) |
|
if self.bert_model is not None: |
|
self.bert_model = self.bert_model.to(device) |
|
if self.cnhuhbert_model is not None: |
|
self.cnhuhbert_model = self.cnhuhbert_model.to(device) |
|
|
|
def set_ref_audio(self, ref_audio_path: str): |
|
''' |
|
To set the reference audio for the TTS model, |
|
including the prompt_semantic and refer_spepc. |
|
Args: |
|
ref_audio_path: str, the path of the reference audio. |
|
''' |
|
self._set_prompt_semantic(ref_audio_path) |
|
self._set_ref_spec(ref_audio_path) |
|
self._set_ref_audio_path(ref_audio_path) |
|
|
|
def _set_ref_audio_path(self, ref_audio_path): |
|
self.prompt_cache["ref_audio_path"] = ref_audio_path |
|
|
|
def _set_ref_spec(self, ref_audio_path): |
|
spec = self._get_ref_spec(ref_audio_path) |
|
if self.prompt_cache["refer_spec"] in [[], None]: |
|
self.prompt_cache["refer_spec"] = [spec] |
|
else: |
|
self.prompt_cache["refer_spec"][0] = spec |
|
|
|
def _get_ref_spec(self, ref_audio_path): |
|
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
maxx = audio.abs().max() |
|
if (maxx > 1): |
|
audio /= min(2, maxx) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.configs.filter_length, |
|
self.configs.sampling_rate, |
|
self.configs.hop_length, |
|
self.configs.win_length, |
|
center=False, |
|
) |
|
spec = spec.to(self.configs.device) |
|
if self.configs.is_half: |
|
spec = spec.half() |
|
return spec |
|
|
|
def _set_prompt_semantic(self, ref_wav_path: str): |
|
zero_wav = np.zeros( |
|
int(self.configs.sampling_rate * 0.3), |
|
dtype=np.float16 if self.configs.is_half else np.float32, |
|
) |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): |
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) |
|
wav16k = torch.from_numpy(wav16k) |
|
zero_wav_torch = torch.from_numpy(zero_wav) |
|
wav16k = wav16k.to(self.configs.device) |
|
zero_wav_torch = zero_wav_torch.to(self.configs.device) |
|
if self.configs.is_half: |
|
wav16k = wav16k.half() |
|
zero_wav_torch = zero_wav_torch.half() |
|
|
|
wav16k = torch.cat([wav16k, zero_wav_torch]) |
|
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = self.vits_model.extract_latent(hubert_feature) |
|
|
|
prompt_semantic = codes[0, 0].to(self.configs.device) |
|
self.prompt_cache["prompt_semantic"] = prompt_semantic |
|
|
|
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None): |
|
seq = sequences[0] |
|
ndim = seq.dim() |
|
if axis < 0: |
|
axis += ndim |
|
dtype: torch.dtype = seq.dtype |
|
pad_value = torch.tensor(pad_value, dtype=dtype) |
|
seq_lengths = [seq.shape[axis] for seq in sequences] |
|
if max_length is None: |
|
max_length = max(seq_lengths) |
|
else: |
|
max_length = max(seq_lengths) if max_length < max( |
|
seq_lengths) else max_length |
|
|
|
padded_sequences = [] |
|
for seq, length in zip(sequences, seq_lengths): |
|
padding = [0] * axis + [0, max_length - |
|
length] + [0] * (ndim - axis - 1) |
|
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) |
|
padded_sequences.append(padded_seq) |
|
batch = torch.stack(padded_sequences) |
|
return batch |
|
|
|
def to_batch(self, data: list, |
|
prompt_data: dict = None, |
|
batch_size: int = 5, |
|
threshold: float = 0.75, |
|
split_bucket: bool = True, |
|
device: torch.device = torch.device("cpu"), |
|
precision: torch.dtype = torch.float32, |
|
): |
|
_data: list = [] |
|
index_and_len_list = [] |
|
for idx, item in enumerate(data): |
|
norm_text_len = len(item["norm_text"]) |
|
index_and_len_list.append([idx, norm_text_len]) |
|
|
|
batch_index_list = [] |
|
if split_bucket: |
|
index_and_len_list.sort(key=lambda x: x[1]) |
|
index_and_len_list = np.array(index_and_len_list, dtype=np.int64) |
|
|
|
batch_index_list_len = 0 |
|
pos = 0 |
|
while pos < index_and_len_list.shape[0]: |
|
|
|
pos_end = min(pos+batch_size, index_and_len_list.shape[0]) |
|
while pos < pos_end: |
|
batch = index_and_len_list[pos:pos_end, 1].astype( |
|
np.float32) |
|
score = batch[(pos_end-pos)//2]/(batch.mean()+1e-8) |
|
if (score >= threshold) or (pos_end-pos == 1): |
|
batch_index = index_and_len_list[pos:pos_end, 0].tolist( |
|
) |
|
batch_index_list_len += len(batch_index) |
|
batch_index_list.append(batch_index) |
|
pos = pos_end |
|
break |
|
pos_end = pos_end-1 |
|
|
|
assert batch_index_list_len == len(data) |
|
|
|
else: |
|
for i in range(len(data)): |
|
if i % batch_size == 0: |
|
batch_index_list.append([]) |
|
batch_index_list[-1].append(i) |
|
|
|
for batch_idx, index_list in enumerate(batch_index_list): |
|
item_list = [data[idx] for idx in index_list] |
|
phones_list = [] |
|
phones_len_list = [] |
|
|
|
all_phones_list = [] |
|
all_phones_len_list = [] |
|
all_bert_features_list = [] |
|
norm_text_batch = [] |
|
all_bert_max_len = 0 |
|
all_phones_max_len = 0 |
|
for item in item_list: |
|
if prompt_data is not None: |
|
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ |
|
.to(dtype=precision, device=device) |
|
all_phones = torch.LongTensor( |
|
prompt_data["phones"]+item["phones"]).to(device) |
|
phones = torch.LongTensor(item["phones"]).to(device) |
|
|
|
else: |
|
all_bert_features = item["bert_features"]\ |
|
.to(dtype=precision, device=device) |
|
phones = torch.LongTensor(item["phones"]).to(device) |
|
all_phones = phones |
|
|
|
|
|
all_bert_max_len = max( |
|
all_bert_max_len, all_bert_features.shape[-1]) |
|
all_phones_max_len = max( |
|
all_phones_max_len, all_phones.shape[-1]) |
|
|
|
phones_list.append(phones) |
|
phones_len_list.append(phones.shape[-1]) |
|
all_phones_list.append(all_phones) |
|
all_phones_len_list.append(all_phones.shape[-1]) |
|
all_bert_features_list.append(all_bert_features) |
|
norm_text_batch.append(item["norm_text"]) |
|
|
|
phones_batch = phones_list |
|
all_phones_batch = all_phones_list |
|
all_bert_features_batch = all_bert_features_list |
|
|
|
max_len = max(all_bert_max_len, all_phones_max_len) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch = { |
|
"phones": phones_batch, |
|
"phones_len": torch.LongTensor(phones_len_list).to(device), |
|
"all_phones": all_phones_batch, |
|
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device), |
|
"all_bert_features": all_bert_features_batch, |
|
"norm_text": norm_text_batch, |
|
"max_len": max_len, |
|
} |
|
_data.append(batch) |
|
|
|
return _data, batch_index_list |
|
|
|
def recovery_order(self, data: list, batch_index_list: list) -> list: |
|
''' |
|
Recovery the order of the audio according to the batch_index_list. |
|
|
|
Args: |
|
data (List[list(np.ndarray)]): the out of order audio . |
|
batch_index_list (List[list[int]]): the batch index list. |
|
|
|
Returns: |
|
list (List[np.ndarray]): the data in the original order. |
|
''' |
|
length = len(sum(batch_index_list, [])) |
|
_data = [None]*length |
|
for i, index_list in enumerate(batch_index_list): |
|
for j, index in enumerate(index_list): |
|
_data[index] = data[i][j] |
|
return _data |
|
|
|
def stop(self,): |
|
''' |
|
Stop the inference process. |
|
''' |
|
self.stop_flag = True |
|
|
|
@torch.no_grad() |
|
def run(self, inputs: dict): |
|
""" |
|
Text to speech inference. |
|
|
|
Args: |
|
inputs (dict): |
|
{ |
|
"text": "", # str.(required) text to be synthesized |
|
"text_lang: "", # str.(required) language of the text to be synthesized |
|
"ref_audio_path": "", # str.(required) reference audio path |
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion |
|
"prompt_text": "", # str.(optional) prompt text for the reference audio |
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio |
|
"top_k": 5, # int. top k sampling |
|
"top_p": 1, # float. top p sampling |
|
"temperature": 1, # float. temperature for sampling |
|
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. |
|
"batch_size": 1, # int. batch size for inference |
|
"batch_threshold": 0.75, # float. threshold for batch splitting. |
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets. |
|
"return_fragment": False, # bool. step by step return the audio fragment. |
|
"speed_factor":1.0, # float. control the speed of the synthesized audio. |
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment. |
|
"seed": -1, # int. random seed for reproducibility. |
|
"parallel_infer": True, # bool. whether to use parallel inference. |
|
"repetition_penalty": 1.35 # float. repetition penalty for T2S model. |
|
} |
|
returns: |
|
Tuple[int, np.ndarray]: sampling rate and audio data. |
|
""" |
|
|
|
self.stop_flag: bool = False |
|
text: str = inputs.get("text", "") |
|
text_lang: str = inputs.get("text_lang", "") |
|
ref_audio_path: str = inputs.get("ref_audio_path", "") |
|
aux_ref_audio_paths: list = inputs.get("aux_ref_audio_paths", []) |
|
prompt_text: str = inputs.get("prompt_text", "") |
|
prompt_lang: str = inputs.get("prompt_lang", "") |
|
top_k: int = inputs.get("top_k", 5) |
|
top_p: float = inputs.get("top_p", 1) |
|
temperature: float = inputs.get("temperature", 1) |
|
text_split_method: str = inputs.get("text_split_method", "cut0") |
|
batch_size = inputs.get("batch_size", 1) |
|
batch_threshold = inputs.get("batch_threshold", 0.75) |
|
speed_factor = inputs.get("speed_factor", 1.0) |
|
split_bucket = inputs.get("split_bucket", True) |
|
return_fragment = inputs.get("return_fragment", False) |
|
fragment_interval = inputs.get("fragment_interval", 0.3) |
|
seed = inputs.get("seed", -1) |
|
seed = -1 if seed in ["", None] else seed |
|
actual_seed = set_seed(seed) |
|
parallel_infer = inputs.get("parallel_infer", True) |
|
repetition_penalty = inputs.get("repetition_penalty", 1.35) |
|
|
|
if parallel_infer: |
|
print(i18n("并行推理模式已开启")) |
|
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer |
|
else: |
|
print(i18n("并行推理模式已关闭")) |
|
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched |
|
|
|
if return_fragment: |
|
print(i18n("分段返回模式已开启")) |
|
if split_bucket: |
|
split_bucket = False |
|
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) |
|
|
|
if split_bucket and speed_factor == 1.0: |
|
print(i18n("分桶处理模式已开启")) |
|
elif speed_factor != 1.0: |
|
print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理")) |
|
split_bucket = False |
|
else: |
|
print(i18n("分桶处理模式已关闭")) |
|
|
|
if fragment_interval < 0.01: |
|
fragment_interval = 0.01 |
|
print(i18n("分段间隔过小,已自动设置为0.01")) |
|
|
|
no_prompt_text = False |
|
if prompt_text in [None, ""]: |
|
no_prompt_text = True |
|
|
|
assert text_lang in self.configs.languages |
|
if not no_prompt_text: |
|
assert prompt_lang in self.configs.languages |
|
|
|
if ref_audio_path in [None, ""] and \ |
|
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])): |
|
raise ValueError( |
|
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") |
|
|
|
|
|
t0 = ttime() |
|
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): |
|
if not os.path.exists(ref_audio_path): |
|
raise ValueError(f"{ref_audio_path} not exists") |
|
self.set_ref_audio(ref_audio_path) |
|
|
|
aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else [] |
|
paths = set(aux_ref_audio_paths) & set( |
|
self.prompt_cache["aux_ref_audio_paths"]) |
|
if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])): |
|
self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths |
|
self.prompt_cache["refer_spec"] = [ |
|
self.prompt_cache["refer_spec"][0]] |
|
for path in aux_ref_audio_paths: |
|
if path in [None, ""]: |
|
continue |
|
if not os.path.exists(path): |
|
print(i18n("音频文件不存在,跳过:{}").format(path)) |
|
continue |
|
self.prompt_cache["refer_spec"].append( |
|
self._get_ref_spec(path)) |
|
|
|
if not no_prompt_text: |
|
prompt_text = prompt_text.strip("\n") |
|
if (prompt_text[-1] not in splits): |
|
prompt_text += "。" if prompt_lang != "en" else "." |
|
print(i18n("实际输入的参考文本:"), prompt_text) |
|
if self.prompt_cache["prompt_text"] != prompt_text: |
|
self.prompt_cache["prompt_text"] = prompt_text |
|
self.prompt_cache["prompt_lang"] = prompt_lang |
|
phones, bert_features, norm_text = \ |
|
self.text_preprocessor.segment_and_extract_feature_for_text( |
|
prompt_text, |
|
prompt_lang, |
|
self.configs.version) |
|
self.prompt_cache["phones"] = phones |
|
self.prompt_cache["bert_features"] = bert_features |
|
self.prompt_cache["norm_text"] = norm_text |
|
|
|
|
|
t1 = ttime() |
|
data: list = None |
|
if not return_fragment: |
|
data = self.text_preprocessor.preprocess( |
|
text, text_lang, text_split_method, self.configs.version) |
|
if len(data) == 0: |
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), |
|
dtype=np.int16) |
|
return |
|
|
|
batch_index_list: list = None |
|
data, batch_index_list = self.to_batch(data, |
|
prompt_data=self.prompt_cache if not no_prompt_text else None, |
|
batch_size=batch_size, |
|
threshold=batch_threshold, |
|
split_bucket=split_bucket, |
|
device=self.configs.device, |
|
precision=self.precision |
|
) |
|
else: |
|
print(i18n("############ 切分文本 ############")) |
|
texts = self.text_preprocessor.pre_seg_text( |
|
text, text_lang, text_split_method) |
|
data = [] |
|
for i in range(len(texts)): |
|
if i % batch_size == 0: |
|
data.append([]) |
|
data[-1].append(texts[i]) |
|
|
|
def make_batch(batch_texts): |
|
batch_data = [] |
|
print(i18n("############ 提取文本Bert特征 ############")) |
|
for text in tqdm(batch_texts): |
|
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text( |
|
text, text_lang, self.configs.version) |
|
if phones is None: |
|
continue |
|
res = { |
|
"phones": phones, |
|
"bert_features": bert_features, |
|
"norm_text": norm_text, |
|
} |
|
batch_data.append(res) |
|
if len(batch_data) == 0: |
|
return None |
|
batch, _ = self.to_batch(batch_data, |
|
prompt_data=self.prompt_cache if not no_prompt_text else None, |
|
batch_size=batch_size, |
|
threshold=batch_threshold, |
|
split_bucket=False, |
|
device=self.configs.device, |
|
precision=self.precision |
|
) |
|
return batch[0] |
|
|
|
t2 = ttime() |
|
try: |
|
print("############ 推理 ############") |
|
|
|
t_34 = 0.0 |
|
t_45 = 0.0 |
|
audio = [] |
|
for item in data: |
|
t3 = ttime() |
|
if return_fragment: |
|
item = make_batch(item) |
|
if item is None: |
|
continue |
|
|
|
batch_phones: List[torch.LongTensor] = item["phones"] |
|
|
|
batch_phones_len: torch.LongTensor = item["phones_len"] |
|
all_phoneme_ids: torch.LongTensor = item["all_phones"] |
|
all_phoneme_lens: torch.LongTensor = item["all_phones_len"] |
|
all_bert_features: torch.LongTensor = item["all_bert_features"] |
|
norm_text: str = item["norm_text"] |
|
max_len = item["max_len"] |
|
|
|
print(i18n("前端处理后的文本(每句):"), norm_text) |
|
if no_prompt_text: |
|
prompt = None |
|
else: |
|
prompt = self.prompt_cache["prompt_semantic"].expand( |
|
len(all_phoneme_ids), -1).to(self.configs.device) |
|
|
|
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_lens, |
|
prompt, |
|
all_bert_features, |
|
|
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
early_stop_num=self.configs.hz * self.configs.max_sec, |
|
max_len=max_len, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t4 = ttime() |
|
t_34 += t4 - t3 |
|
|
|
refer_audio_spec: torch.Tensor = [item.to( |
|
dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]] |
|
|
|
batch_audio_fragment = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if speed_factor == 1.0: |
|
|
|
pred_semantic_list = [ |
|
item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] |
|
upsample_rate = math.prod(self.vits_model.upsample_rates) |
|
audio_frag_idx = [pred_semantic_list[i].shape[0]*2 * |
|
upsample_rate for i in range(0, len(pred_semantic_list))] |
|
audio_frag_end_idx = [sum(audio_frag_idx[:i+1]) |
|
for i in range(0, len(audio_frag_idx))] |
|
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze( |
|
0).unsqueeze(0).to(self.configs.device) |
|
_batch_phones = torch.cat(batch_phones).unsqueeze( |
|
0).to(self.configs.device) |
|
_batch_audio_fragment = (self.vits_model.decode( |
|
all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor |
|
).detach()[0, 0, :]) |
|
audio_frag_end_idx.insert(0, 0) |
|
batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] |
|
else: |
|
|
|
for i, idx in enumerate(idx_list): |
|
phones = batch_phones[i].unsqueeze( |
|
0).to(self.configs.device) |
|
|
|
_pred_semantic = ( |
|
pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) |
|
audio_fragment = (self.vits_model.decode( |
|
_pred_semantic, phones, refer_audio_spec, speed=speed_factor |
|
).detach()[0, 0, :]) |
|
batch_audio_fragment.append( |
|
audio_fragment |
|
) |
|
|
|
t5 = ttime() |
|
t_45 += t5 - t4 |
|
if return_fragment: |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % |
|
(t1 - t0, t2 - t1, t4 - t3, t5 - t4)) |
|
yield self.audio_postprocess([batch_audio_fragment], |
|
self.configs.sampling_rate, |
|
None, |
|
speed_factor, |
|
False, |
|
fragment_interval |
|
) |
|
else: |
|
audio.append(batch_audio_fragment) |
|
|
|
if self.stop_flag: |
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), |
|
dtype=np.int16) |
|
return |
|
|
|
if not return_fragment: |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % |
|
(t1 - t0, t2 - t1, t_34, t_45)) |
|
if len(audio) == 0: |
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), |
|
dtype=np.int16) |
|
return |
|
yield self.audio_postprocess(audio, |
|
self.configs.sampling_rate, |
|
batch_index_list, |
|
speed_factor, |
|
split_bucket, |
|
fragment_interval |
|
) |
|
|
|
except Exception as e: |
|
traceback.print_exc() |
|
|
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), |
|
dtype=np.int16) |
|
|
|
del self.t2s_model |
|
del self.vits_model |
|
self.t2s_model = None |
|
self.vits_model = None |
|
self.init_t2s_weights(self.configs.t2s_weights_path) |
|
self.init_vits_weights(self.configs.vits_weights_path) |
|
raise e |
|
finally: |
|
self.empty_cache() |
|
|
|
def empty_cache(self): |
|
try: |
|
gc.collect() |
|
if "cuda" in str(self.configs.device): |
|
torch.cuda.empty_cache() |
|
elif str(self.configs.device) == "mps": |
|
torch.mps.empty_cache() |
|
except: |
|
pass |
|
|
|
def audio_postprocess(self, |
|
audio: List[torch.Tensor], |
|
sr: int, |
|
batch_index_list: list = None, |
|
speed_factor: float = 1.0, |
|
split_bucket: bool = True, |
|
fragment_interval: float = 0.3 |
|
) -> Tuple[int, np.ndarray]: |
|
zero_wav = torch.zeros( |
|
int(self.configs.sampling_rate * fragment_interval), |
|
dtype=self.precision, |
|
device=self.configs.device |
|
) |
|
|
|
for i, batch in enumerate(audio): |
|
for j, audio_fragment in enumerate(batch): |
|
max_audio = torch.abs(audio_fragment).max() |
|
if max_audio > 1: |
|
audio_fragment /= max_audio |
|
audio_fragment: torch.Tensor = torch.cat( |
|
[audio_fragment, zero_wav], dim=0) |
|
audio[i][j] = audio_fragment.cpu().numpy() |
|
|
|
if split_bucket: |
|
audio = self.recovery_order(audio, batch_index_list) |
|
else: |
|
|
|
audio = sum(audio, []) |
|
|
|
audio = np.concatenate(audio, 0) |
|
audio = (audio * 32768).astype(np.int16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return sr, audio |
|
|
|
|
|
def speed_change(input_audio: np.ndarray, speed: float, sr: int): |
|
|
|
raw_audio = input_audio.astype(np.int16).tobytes() |
|
|
|
|
|
input_stream = ffmpeg.input( |
|
'pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1) |
|
|
|
|
|
output_stream = input_stream.filter('atempo', speed) |
|
|
|
|
|
out, _ = ( |
|
output_stream.output('pipe:', format='s16le', acodec='pcm_s16le') |
|
.run(input=raw_audio, capture_stdout=True, capture_stderr=True) |
|
) |
|
|
|
|
|
processed_audio = np.frombuffer(out, np.int16) |
|
|
|
return processed_audio |
|
|