|
import os |
|
import traceback,gradio as gr |
|
import logging |
|
from tools.i18n.i18n import I18nAuto |
|
from tools.my_utils import clean_path |
|
i18n = I18nAuto() |
|
|
|
logger = logging.getLogger(__name__) |
|
import librosa,ffmpeg |
|
import soundfile as sf |
|
import torch |
|
import sys |
|
from mdxnet import MDXNetDereverb |
|
from vr import AudioPre, AudioPreDeEcho |
|
from bsroformer import BsRoformer_Loader |
|
|
|
try: |
|
import gradio.analytics as analytics |
|
analytics.version_check = lambda:None |
|
except:... |
|
|
|
weight_uvr5_root = "tools/uvr5/uvr5_weights" |
|
uvr5_names = [] |
|
for name in os.listdir(weight_uvr5_root): |
|
if name.endswith(".pth") or name.endswith(".ckpt") or "onnx" in name: |
|
uvr5_names.append(name.replace(".pth", "").replace(".ckpt", "")) |
|
|
|
device=sys.argv[1] |
|
is_half=eval(sys.argv[2]) |
|
webui_port_uvr5=int(sys.argv[3]) |
|
is_share=eval(sys.argv[4]) |
|
|
|
def html_left(text, label='p'): |
|
return f"""<div style="text-align: left; margin: 0; padding: 0;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
def html_center(text, label='p'): |
|
return f"""<div style="text-align: center; margin: 100; padding: 50;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): |
|
infos = [] |
|
try: |
|
inp_root = clean_path(inp_root) |
|
save_root_vocal = clean_path(save_root_vocal) |
|
save_root_ins = clean_path(save_root_ins) |
|
is_hp3 = "HP3" in model_name |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
pre_fun = MDXNetDereverb(15) |
|
elif model_name == "Bs_Roformer" or "bs_roformer" in model_name.lower(): |
|
func = BsRoformer_Loader |
|
pre_fun = func( |
|
model_path = os.path.join(weight_uvr5_root, model_name + ".ckpt"), |
|
device = device, |
|
is_half=is_half |
|
) |
|
else: |
|
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho |
|
pre_fun = func( |
|
agg=int(agg), |
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), |
|
device=device, |
|
is_half=is_half, |
|
) |
|
if inp_root != "": |
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] |
|
else: |
|
paths = [path.name for path in paths] |
|
for path in paths: |
|
inp_path = os.path.join(inp_root, path) |
|
if(os.path.isfile(inp_path)==False):continue |
|
need_reformat = 1 |
|
done = 0 |
|
try: |
|
info = ffmpeg.probe(inp_path, cmd="ffprobe") |
|
if ( |
|
info["streams"][0]["channels"] == 2 |
|
and info["streams"][0]["sample_rate"] == "44100" |
|
): |
|
need_reformat = 0 |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0,is_hp3 |
|
) |
|
done = 1 |
|
except: |
|
need_reformat = 1 |
|
traceback.print_exc() |
|
if need_reformat == 1: |
|
tmp_path = "%s/%s.reformatted.wav" % ( |
|
os.path.join(os.environ["TEMP"]), |
|
os.path.basename(inp_path), |
|
) |
|
os.system( |
|
f'ffmpeg -i "{inp_path}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{tmp_path}" -y' |
|
) |
|
inp_path = tmp_path |
|
try: |
|
if done == 0: |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0,is_hp3 |
|
) |
|
infos.append("%s->Success" % (os.path.basename(inp_path))) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append( |
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) |
|
) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append(traceback.format_exc()) |
|
yield "\n".join(infos) |
|
finally: |
|
try: |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
del pre_fun.pred.model |
|
del pre_fun.pred.model_ |
|
else: |
|
del pre_fun.model |
|
del pre_fun |
|
except: |
|
traceback.print_exc() |
|
print("clean_empty_cache") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
yield "\n".join(infos) |
|
|
|
with gr.Blocks(title="UVR5 WebUI") as app: |
|
gr.Markdown( |
|
value= |
|
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") |
|
) |
|
with gr.Group(): |
|
gr.Markdown(html_center(i18n("伴奏人声分离&去混响&去回声"),'h2')) |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=html_left(i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "<br>" + \ |
|
i18n("合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。")+ "<br>" + \ |
|
i18n("模型分为三类:") + "<br>" + \ |
|
i18n("1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;") + "<br>" + \ |
|
i18n("2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;") + "<br>" + \ |
|
i18n("3、去混响、去延迟模型(by FoxJoy):") + "<br> " + \ |
|
i18n("(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;") + "<br> " + \ |
|
i18n("(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。") + "<br>" + \ |
|
i18n("去混响/去延迟,附:") + "<br>" + \ |
|
i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;") + "<br>" + \ |
|
i18n("2、MDX-Net-Dereverb模型挺慢的;") + "<br>" + \ |
|
i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"),'h4') |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) |
|
dir_wav_input = gr.Textbox( |
|
label=i18n("输入待处理音频文件夹路径"), |
|
placeholder="C:\\Users\\Desktop\\todo-songs", |
|
) |
|
wav_inputs = gr.File( |
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") |
|
) |
|
with gr.Column(): |
|
agg = gr.Slider( |
|
minimum=0, |
|
maximum=20, |
|
step=1, |
|
label=i18n("人声提取激进程度"), |
|
value=10, |
|
interactive=True, |
|
visible=False, |
|
) |
|
opt_vocal_root = gr.Textbox( |
|
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt" |
|
) |
|
opt_ins_root = gr.Textbox( |
|
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt" |
|
) |
|
format0 = gr.Radio( |
|
label=i18n("导出文件格式"), |
|
choices=["wav", "flac", "mp3", "m4a"], |
|
value="flac", |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
with gr.Row(): |
|
but2 = gr.Button(i18n("转换"), variant="primary") |
|
with gr.Row(): |
|
vc_output4 = gr.Textbox(label=i18n("输出信息"),lines=3) |
|
but2.click( |
|
uvr, |
|
[ |
|
model_choose, |
|
dir_wav_input, |
|
opt_vocal_root, |
|
wav_inputs, |
|
opt_ins_root, |
|
agg, |
|
format0, |
|
], |
|
[vc_output4], |
|
api_name="uvr_convert", |
|
) |
|
app.queue().launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
share=is_share, |
|
server_port=webui_port_uvr5, |
|
quiet=True, |
|
) |
|
|