# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py # reference: https://github.com/lifeiteng/vall-e import math from typing import List, Optional import torch from tqdm import tqdm from AR.models.utils import make_pad_mask from AR.models.utils import ( topk_sampling, sample, logits_to_probs, multinomial_sample_one_no_sync, dpo_loss, make_reject_y, get_batch_logps ) from AR.modules.embedding import SinePositionalEmbedding from AR.modules.embedding import TokenEmbedding from AR.modules.transformer import LayerNorm from AR.modules.transformer import TransformerEncoder from AR.modules.transformer import TransformerEncoderLayer from torch import nn from torch.nn import functional as F from torchmetrics.classification import MulticlassAccuracy default_config = { "embedding_dim": 512, "hidden_dim": 512, "num_head": 8, "num_layers": 12, "num_codebook": 8, "p_dropout": 0.0, "vocab_size": 1024 + 1, "phoneme_vocab_size": 512, "EOS": 1024, } # @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定 # Efficient implementation equivalent to the following: def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor: B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2) if scale is None: scale_factor = torch.tensor(1 / math.sqrt(query.size(-1))) else: scale_factor = scale attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask, float("-inf")) else: attn_bias += attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_weight.masked_fill_(attn_mask, 0) else: attn_mask[attn_mask!=float("-inf")] =0 attn_mask[attn_mask==float("-inf")] =1 attn_weight.masked_fill_(attn_mask, 0) return attn_weight @ value @torch.jit.script class T2SMLP: def __init__(self, w1, b1, w2, b2): self.w1 = w1 self.b1 = b1 self.w2 = w2 self.b2 = b2 def forward(self, x): x = F.relu(F.linear(x, self.w1, self.b1)) x = F.linear(x, self.w2, self.b2) return x @torch.jit.script class T2SBlock: def __init__( self, num_heads, hidden_dim: int, mlp: T2SMLP, qkv_w, qkv_b, out_w, out_b, norm_w1, norm_b1, norm_eps1, norm_w2, norm_b2, norm_eps2, ): self.num_heads = num_heads self.mlp = mlp self.hidden_dim: int = hidden_dim self.qkv_w = qkv_w self.qkv_b = qkv_b self.out_w = out_w self.out_b = out_b self.norm_w1 = norm_w1 self.norm_b1 = norm_b1 self.norm_eps1 = norm_eps1 self.norm_w2 = norm_w2 self.norm_b2 = norm_b2 self.norm_eps2 = norm_eps2 self.false = torch.tensor(False, dtype=torch.bool) @torch.jit.ignore def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]): if padding_mask is None: return x if padding_mask.dtype == torch.bool: return x.masked_fill(padding_mask, 0) else: return x * padding_mask def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True): q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1) batch_size = q.shape[0] q_len = q.shape[1] kv_len = k.shape[1] q = self.to_mask(q, padding_mask) k_cache = self.to_mask(k, padding_mask) v_cache = self.to_mask(v, padding_mask) q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) if torch_sdpa: attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask) else: attn = scaled_dot_product_attention(q, k, v, attn_mask) attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b) if padding_mask is not None: for i in range(batch_size): # mask = padding_mask[i,:,0] if self.false.device!= padding_mask.device: self.false = self.false.to(padding_mask.device) idx = torch.where(padding_mask[i,:,0]==self.false)[0] x_item = x[i,idx,:].unsqueeze(0) attn_item = attn[i,idx,:].unsqueeze(0) x_item = x_item + attn_item x_item = F.layer_norm( x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 ) x_item = x_item + self.mlp.forward(x_item) x_item = F.layer_norm( x_item, [self.hidden_dim], self.norm_w2, self.norm_b2, self.norm_eps2, ) x[i,idx,:] = x_item.squeeze(0) x = self.to_mask(x, padding_mask) else: x = x + attn x = F.layer_norm( x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 ) x = x + self.mlp.forward(x) x = F.layer_norm( x, [self.hidden_dim], self.norm_w2, self.norm_b2, self.norm_eps2, ) return x, k_cache, v_cache def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True): q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) k_cache = torch.cat([k_cache, k], dim=1) v_cache = torch.cat([v_cache, v], dim=1) batch_size = q.shape[0] q_len = q.shape[1] kv_len = k_cache.shape[1] q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) if torch_sdpa: attn = F.scaled_dot_product_attention(q, k, v) else: attn = scaled_dot_product_attention(q, k, v, attn_mask) attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) attn = F.linear(attn, self.out_w, self.out_b) x = x + attn x = F.layer_norm( x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 ) x = x + self.mlp.forward(x) x = F.layer_norm( x, [self.hidden_dim], self.norm_w2, self.norm_b2, self.norm_eps2, ) return x, k_cache, v_cache @torch.jit.script class T2STransformer: def __init__(self, num_blocks : int, blocks: List[T2SBlock]): self.num_blocks : int = num_blocks self.blocks = blocks def process_prompt( self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask : Optional[torch.Tensor]=None, torch_sdpa:bool=True ): k_cache : List[torch.Tensor] = [] v_cache : List[torch.Tensor] = [] for i in range(self.num_blocks): x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa) k_cache.append(k_cache_) v_cache.append(v_cache_) return x, k_cache, v_cache def decode_next_token( self, x:torch.Tensor, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor], attn_mask : Optional[torch.Tensor]=None, torch_sdpa:bool=True ): for i in range(self.num_blocks): x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i], attn_mask, torch_sdpa) return x, k_cache, v_cache class Text2SemanticDecoder(nn.Module): def __init__(self, config, norm_first=False, top_k=3): super(Text2SemanticDecoder, self).__init__() self.model_dim = config["model"]["hidden_dim"] self.embedding_dim = config["model"]["embedding_dim"] self.num_head = config["model"]["head"] self.num_layers = config["model"]["n_layer"] self.norm_first = norm_first self.vocab_size = config["model"]["vocab_size"] self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] self.p_dropout = config["model"]["dropout"] self.EOS = config["model"]["EOS"] self.norm_first = norm_first assert self.EOS == self.vocab_size - 1 # should be same as num of kmeans bin # assert self.EOS == 1024 self.bert_proj = nn.Linear(1024, self.embedding_dim) self.ar_text_embedding = TokenEmbedding( self.embedding_dim, self.phoneme_vocab_size, self.p_dropout ) self.ar_text_position = SinePositionalEmbedding( self.embedding_dim, dropout=0.1, scale=False, alpha=True ) self.ar_audio_embedding = TokenEmbedding( self.embedding_dim, self.vocab_size, self.p_dropout ) self.ar_audio_position = SinePositionalEmbedding( self.embedding_dim, dropout=0.1, scale=False, alpha=True ) self.h = TransformerEncoder( TransformerEncoderLayer( d_model=self.model_dim, nhead=self.num_head, dim_feedforward=self.model_dim * 4, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=self.num_layers, norm=LayerNorm(self.model_dim) if norm_first else None, ) self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) self.loss_fct = nn.CrossEntropyLoss(reduction="sum") self.ar_accuracy_metric = MulticlassAccuracy( self.vocab_size, top_k=top_k, average="micro", multidim_average="global", ignore_index=self.EOS, ) blocks = [] for i in range(self.num_layers): layer = self.h.layers[i] t2smlp = T2SMLP( layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias ) block = T2SBlock( self.num_head, self.model_dim, t2smlp, layer.self_attn.in_proj_weight, layer.self_attn.in_proj_bias, layer.self_attn.out_proj.weight, layer.self_attn.out_proj.bias, layer.norm1.weight, layer.norm1.bias, layer.norm1.eps, layer.norm2.weight, layer.norm2.bias, layer.norm2.eps ) blocks.append(block) self.t2s_transformer = T2STransformer(self.num_layers, blocks) def make_input_data(self, x, x_lens, y, y_lens, bert_feature): x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = self.ar_text_position(x) x_mask = make_pad_mask(x_lens) y_mask = make_pad_mask(y_lens) y_mask_int = y_mask.type(torch.int64) codes = y.type(torch.int64) * (1 - y_mask_int) # Training # AR Decoder y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS) x_len = x_lens.max() y_len = y_lens.max() y_emb = self.ar_audio_embedding(y) y_pos = self.ar_audio_position(y_emb) xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) ar_xy_padding_mask = xy_padding_mask x_attn_mask = F.pad( torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device), (0, y_len), value=True, ) # x_attn_mask[:, x_len]=False y_attn_mask = F.pad( torch.triu( torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1, ), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0) bsz, src_len = x.shape[0], x_len + y_len _xy_padding_mask = ( ar_xy_padding_mask.view(bsz, 1, 1, src_len) .expand(-1, self.num_head, -1, -1) .reshape(bsz * self.num_head, 1, src_len) ) xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask) new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) new_attn_mask.masked_fill_(xy_attn_mask, float("-inf")) xy_attn_mask = new_attn_mask # x 和完整的 y 一次性输入模型 xy_pos = torch.concat([x, y_pos], dim=1) return xy_pos, xy_attn_mask, targets def forward(self, x, x_lens, y, y_lens, bert_feature): """ x: phoneme_ids y: semantic_ids """ reject_y, reject_y_lens = make_reject_y(y, y_lens) xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature) xy_dec, _ = self.h( (xy_pos, None), mask=xy_attn_mask, ) x_len = x_lens.max() logits = self.ar_predict_layer(xy_dec[:, x_len:]) ###### DPO ############# reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature) reject_xy_dec, _ = self.h( (reject_xy_pos, None), mask=reject_xy_attn_mask, ) x_len = x_lens.max() reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:]) # loss # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum") acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item() A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets) loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True) loss = loss_1 + loss_2 return loss, acc def forward_old(self, x, x_lens, y, y_lens, bert_feature): """ x: phoneme_ids y: semantic_ids """ x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = self.ar_text_position(x) x_mask = make_pad_mask(x_lens) y_mask = make_pad_mask(y_lens) y_mask_int = y_mask.type(torch.int64) codes = y.type(torch.int64) * (1 - y_mask_int) # Training # AR Decoder y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS) x_len = x_lens.max() y_len = y_lens.max() y_emb = self.ar_audio_embedding(y) y_pos = self.ar_audio_position(y_emb) xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) ar_xy_padding_mask = xy_padding_mask x_attn_mask = F.pad( torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device), (0, y_len), value=True, ) y_attn_mask = F.pad( torch.triu( torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1, ), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0) bsz, src_len = x.shape[0], x_len + y_len _xy_padding_mask = ( ar_xy_padding_mask.view(bsz, 1, 1, src_len) .expand(-1, self.num_head, -1, -1) .reshape(bsz * self.num_head, 1, src_len) ) xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask) new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) new_attn_mask.masked_fill_(xy_attn_mask, float("-inf")) xy_attn_mask = new_attn_mask # x 和完整的 y 一次性输入模型 xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.h( (xy_pos, None), mask=xy_attn_mask, ) logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1) # loss # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum loss = F.cross_entropy(logits, targets, reduction="sum") acc = self.ar_accuracy_metric(logits.detach(), targets).item() return loss, acc # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么 def infer( self, x, x_lens, prompts, bert_feature, top_k: int = -100, early_stop_num: int = -1, temperature: float = 1.0, ): x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = self.ar_text_position(x) # AR Decoder y = prompts prefix_len = y.shape[1] x_len = x.shape[1] x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) stop = False for _ in tqdm(range(1500)): y_emb = self.ar_audio_embedding(y) y_pos = self.ar_audio_position(y_emb) # x 和逐渐增长的 y 一起输入给模型 xy_pos = torch.concat([x, y_pos], dim=1) y_len = y.shape[1] x_attn_mask_pad = F.pad( x_attn_mask, (0, y_len), value=True, ) y_attn_mask = F.pad( torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to( y.device ) xy_dec, _ = self.h( (xy_pos, None), mask=xy_attn_mask, ) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = topk_sampling( logits, top_k=top_k, top_p=1.0, temperature=temperature ) if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: print("use early stop num:", early_stop_num) stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS) stop = True if stop: if prompts.shape[1] == y.shape[1]: y = torch.concat([y, torch.zeros_like(samples)], dim=1) print("bad zero prediction") print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") break # 本次生成的 semantic_ids 和之前的 y 构成新的 y # print(samples.shape)#[1,1]#第一个1是bs # import os # os._exit(2333) y = torch.concat([y, samples], dim=1) return y def pad_y_eos(self, y, y_mask_int, eos_id): targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad( y_mask_int, (0, 1), value=1 ) # 错位 return targets[:, :-1], targets[:, 1:] def infer_panel_batch_infer( self, x:List[torch.LongTensor], #####全部文本token x_lens:torch.LongTensor, prompts:torch.LongTensor, ####参考音频token bert_feature:List[torch.LongTensor], top_k: int = -100, top_p: int = 100, early_stop_num: int = -1, temperature: float = 1.0, repetition_penalty: float = 1.35, **kwargs, ): if prompts is None: print("Warning: Prompt free is not supported batch_infer! switch to naive_infer") return self.infer_panel_naive_batched(x, x_lens, prompts, bert_feature, top_k=top_k, top_p=top_p, early_stop_num=early_stop_num, temperature=temperature, **kwargs) max_len = kwargs.get("max_len",x_lens.max()) x_list = [] for x_item, bert_item in zip(x, bert_feature): # max_len = max(max_len, x_item.shape[0], bert_item.shape[1]) x_item = self.ar_text_embedding(x_item.unsqueeze(0)) x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0)) x_item = self.ar_text_position(x_item).squeeze(0) x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0] early_stop_num) or idx==1499: print("use early stop num:", early_stop_num) stop = True for i, batch_index in enumerate(batch_idx_map): batch_index = batch_idx_map[i] idx_list[batch_index] = idx y_list[batch_index] = y[i, :-1] if not (None in idx_list): stop = True if stop: if y.shape[1]==0: y = torch.concat([y, torch.zeros_like(samples)], dim=1) print("bad zero prediction") print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") break ####################### update next step ################################### y_emb = self.ar_audio_embedding(y[:, -1:]) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device) if (None in idx_list): for i in range(x.shape[0]): if idx_list[i] is None: idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替 if ref_free: return y_list, [0]*x.shape[0] # print(idx_list) return y_list, idx_list def infer_panel_naive_batched(self, x:List[torch.LongTensor], #####全部文本token x_lens:torch.LongTensor, prompts:torch.LongTensor, ####参考音频token bert_feature:List[torch.LongTensor], top_k: int = -100, top_p: int = 100, early_stop_num: int = -1, temperature: float = 1.0, repetition_penalty: float = 1.35, **kwargs ): y_list = [] idx_list = [] for i in range(len(x)): y, idx = self.infer_panel_naive(x[i].unsqueeze(0), x_lens[i], prompts[i].unsqueeze(0) if prompts is not None else None, bert_feature[i].unsqueeze(0), top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs) y_list.append(y[0]) idx_list.append(idx) return y_list, idx_list def infer_panel_naive( self, x:torch.LongTensor, #####全部文本token x_lens:torch.LongTensor, prompts:torch.LongTensor, ####参考音频token bert_feature:torch.LongTensor, top_k: int = -100, top_p: int = 100, early_stop_num: int = -1, temperature: float = 1.0, repetition_penalty: float = 1.35, **kwargs ): x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = self.ar_text_position(x) # AR Decoder y = prompts x_len = x.shape[1] x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) stop = False # print(1111111,self.num_layers) k_cache = None v_cache = None ################### first step ########################## if y is not None: y_emb = self.ar_audio_embedding(y) y_len = y_emb.shape[1] prefix_len = y.shape[1] y_pos = self.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) ref_free = False else: y_emb = None y_len = 0 prefix_len = 0 y_pos = None xy_pos = x y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device) ref_free = True bsz = x.shape[0] src_len = x_len + y_len x_attn_mask_pad = F.pad( x_attn_mask, (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y) value=True, ) y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y) torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\ .unsqueeze(0)\ .expand(bsz*self.num_head, -1, -1)\ .view(bsz, self.num_head, src_len, src_len)\ .to(device=x.device, dtype=torch.bool) for idx in tqdm(range(1500)): if xy_attn_mask is not None: xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None) else: xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) logits = self.ar_predict_layer( xy_dec[:, -1] ) if idx == 0: xy_attn_mask = None if(idx<11):###至少预测出10个token不然不给停止(0.4s) logits = logits[:, :-1] samples = sample( logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature )[0] y = torch.concat([y, samples], dim=1) if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: print("use early stop num:", early_stop_num) stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: stop = True if stop: if y.shape[1] == 0: y = torch.concat([y, torch.zeros_like(samples)], dim=1) print("bad zero prediction") print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") break ####################### update next step ################################### y_emb = self.ar_audio_embedding(y[:, -1:]) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device) if ref_free: return y[:, :-1], 0 return y[:, :-1], idx - 1 def infer_panel( self, x:torch.LongTensor, #####全部文本token x_lens:torch.LongTensor, prompts:torch.LongTensor, ####参考音频token bert_feature:torch.LongTensor, top_k: int = -100, top_p: int = 100, early_stop_num: int = -1, temperature: float = 1.0, repetition_penalty: float = 1.35, **kwargs ): return self.infer_panel_naive(x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs)