Spaces:
Sleeping
Sleeping
File size: 4,447 Bytes
0291473 d0713cc 0291473 4af33c5 0291473 64ba1a9 0291473 24b2aa0 0291473 a43e51c 0291473 24b2aa0 91aeeb9 4af33c5 d0713cc 0a716a3 431cf64 24b2aa0 431cf64 4518a48 a43e51c 91aeeb9 431cf64 ba020f3 5d8dc18 f4a055e f7ae953 083778b aeb80b8 3711db1 2342079 3711db1 d4856a0 1ed24eb d4856a0 1ed24eb 6b0c052 5c51f3d 1ed24eb 3711db1 91aeeb9 9aff396 9e7e24e b1d070d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from diffusers import AudioLDMControlNetPipeline, ControlNetModel
import os
from pretty_midi import PrettyMIDI
from tempfile import _TemporaryFileWrapper
import torch
import torchaudio
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lauraibnz/midi-audioldm", torch_dtype=torch_dtype)
pipe = AudioLDMControlNetPipeline.from_pretrained(
"cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
pipe = pipe.to(device)
generator = torch.Generator(device)
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5, random_seed=0, controlnet_conditioning_scale=1, num_inference_steps=20, guidance_scale=2.5, guess_mode=False):
if isinstance(midi_file, _TemporaryFileWrapper):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
audio = pipe(
prompt,
negative_prompt=negative_prompt,
midi=midi,
audio_length_in_s=audio_length_in_s,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guess_mode=guess_mode,
generator=generator.manual_seed(int(random_seed)),
guidance_scale=float(guidance_scale),
)
return (16000, audio.audios.T)
with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])) as demo:
gr.HTML(
"""
<h1 align="center"; size="16">🎹 MIDI-AudioLDM </h1>
""")
gr.Markdown(
"""
MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as input and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.
""")
with gr.Row():
with gr.Column(variant='panel'):
midi = gr.File(label="midi file", file_types=[".mid"])
prompt = gr.Textbox(label="prompt", info="Enter a descriptive text prompt to guide the audio generation.")
with gr.Column(variant='panel'):
audio = gr.Audio(label="audio")
with gr.Accordion("Advanced Settings", open=False):
duration = gr.Slider(0, 30, value=5, step=5, label="duration", info="Modify the duration in seconds of the output audio file.")
inf = gr.Slider(0, 50, value=20, step=0.1, label="inference steps", info="Edit the number of denoising steps. A larger number usually leads to higher quality but slower results.")
guidance_scale = gr.Slider(0, 4, value=2.5, step=0.5, label="guidance scale", info="Modify the guidance scale. The higher the value the more linked the generated audio to the text prompt, sometimes at the expense of lower quality.")
neg_prompt = gr.Textbox(label="negative prompt", info="Optionally enter a negative text prompt not to guide the audio generation.")
seed = gr.Number(value=25, label="random seed", info="Change the random seed for a different generation result.")
cond = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale", info="Enter a value between 0 and 1. The larger the more it will take the conditioning into account. Lower values are recommended for more creative prompts.")
guess = gr.Checkbox(label="guess mode", info="If selected, the model will try to recognize the content of the MIDI without the need of a text prompt.")
btn = gr.Button("Generate")
btn.click(predict, inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], outputs=[audio])
gr.Examples(examples=[["S00.mid", "piano", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "violin", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "woman singing", "", 10, 25, 0.8, 20, 2.5, False]], inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], fn=predict, outputs=audio, cache_examples=True)
demo.launch() |