Spaces:
Sleeping
Sleeping
File size: 4,563 Bytes
0291473 24b2aa0 0291473 a43e51c 0291473 24b2aa0 805ddf8 f0a6291 0a716a3 431cf64 24b2aa0 431cf64 4518a48 a43e51c 431cf64 ba020f3 5d8dc18 9e7e24e f91f697 9e7e24e ff1eacf 9e7e24e f91f697 9e7e24e ff1eacf 9e7e24e ace5c12 f91f697 9e7e24e 709af2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
from diffusers import AudioLDMControlNetPipeline, ControlNetModel
from pretty_midi import PrettyMIDI
import torch
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lauraibnz/midi-audioldm", torch_dtype=torch_dtype)
pipe = AudioLDMControlNetPipeline.from_pretrained(
"cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
pipe = pipe.to(device)
generator = torch.Generator(device)
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5, random_seed=0, controlnet_conditioning_scale=1, num_inference_steps=20, guess_mode=False):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
audio = pipe(
prompt,
negative_prompt=negative_prompt,
midi=midi,
audio_length_in_s=audio_length_in_s,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guess_mode=guess_mode,
generator=generator.manual_seed(int(random_seed)),
)
return (16000, audio.audios.T)
with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])) as demo:
gr.Markdown(
"""
# MIDI-AudioLDM
MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as inputs and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.
""")
with gr.Row():
with gr.Column():
midi = gr.File(label="midi file", file_types=[".mid"])
prompt = gr.Textbox(label="prompt")
neg_prompt = gr.Textbox(label="negative prompt")
with gr.Accordion("Advanced settings", open=False):
duration = gr.Slider(0, 30, value=5, step=5, label="duration (seconds)")
seed = gr.Number(value=42, label="seed")
cond = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale")
inf = gr.Slider(0, 50, value=20, step=0.1, label="inference steps")
guess = gr.Checkbox(label="guess mode")
with gr.Column():
audio = gr.Audio(label="audio")
btn = gr.Button("Generate")
btn.click(predict, inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guess], outputs=[audio])
# gr.Examples=(examples=["S00.mid", "piano", "", 10, 25, 1.0, 20, False], input=[midi, prompt, neg_prompt, duration, seed, cond, inf, guess])
# demo = gr.Interface(
# fn=predict, inputs=[
# gr.File(label="midi file", file_types=[".mid"]),
# "text",
# gr.Textbox(label="negative prompt"),
# gr.Slider(0, 30, value=5, step=5, label="duration (seconds)"),
# gr.Number(value=42, label="seed"),
# gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale"),
# gr.Slider(0, 50, value=20, step=0.1, label="inference steps"),
# gr.Checkbox(label="guess mode")
# ],
# outputs="audio",
# examples=[["S00.mid", "piano", "", 10, 25, 1.0, 20, False]],
# cache_examples=True,
# title="🎹 MIDI-AudioLDM",
# description="MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as inputs and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.",
# theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])
# )
demo.launch() |