Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,8 @@ from tempfile import _TemporaryFileWrapper
|
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
|
|
|
|
|
9 |
if torch.cuda.is_available():
|
10 |
device = "cuda"
|
11 |
torch_dtype = torch.float16
|
@@ -21,10 +23,12 @@ pipe = pipe.to(device)
|
|
21 |
generator = torch.Generator(device)
|
22 |
|
23 |
|
24 |
-
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=
|
25 |
if isinstance(midi_file, _TemporaryFileWrapper):
|
26 |
midi_file = midi_file.name
|
27 |
midi = PrettyMIDI(midi_file)
|
|
|
|
|
28 |
audio = pipe(
|
29 |
prompt,
|
30 |
negative_prompt=negative_prompt,
|
@@ -36,7 +40,8 @@ def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5,
|
|
36 |
generator=generator.manual_seed(int(random_seed)),
|
37 |
guidance_scale=float(guidance_scale),
|
38 |
)
|
39 |
-
return (
|
|
|
40 |
|
41 |
with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])) as demo:
|
42 |
gr.HTML(
|
@@ -52,7 +57,8 @@ with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.the
|
|
52 |
midi = gr.File(label="midi file", file_types=[".mid"])
|
53 |
prompt = gr.Textbox(label="prompt", info="Enter a descriptive text prompt to guide the audio generation.")
|
54 |
with gr.Column(variant='panel'):
|
55 |
-
|
|
|
56 |
with gr.Accordion("Advanced Settings", open=False):
|
57 |
duration = gr.Slider(0, 30, value=10, step=2.5, label="duration", info="Modify the duration in seconds of the output audio file.")
|
58 |
inf = gr.Slider(0, 50, value=20, step=1, label="inference steps", info="Edit the number of denoising steps. A larger number usually leads to higher quality but slower results.")
|
@@ -62,7 +68,7 @@ with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.the
|
|
62 |
cond = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale", info="Choose a value between 0 and 1. The larger the more it will take the conditioning into account. Lower values are recommended for more creative prompts.")
|
63 |
guess = gr.Checkbox(label="guess mode", info="Optionally select guess mode. If so, the model will try to recognize the content of the MIDI without the need of a text prompt.")
|
64 |
btn = gr.Button("Generate")
|
65 |
-
btn.click(predict, inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], outputs=[audio])
|
66 |
gr.Examples(examples=[["S00.mid", "piano", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "violin", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "woman singing, studio recording", "noise", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "jazz band, clean", "noise", 10, 25, 0.8, 20, 2.5, False], ["S00.mid", "choir", "noise, percussion", 10, 25, 0.7, 20, 2.5, False]], inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], fn=predict, outputs=audio, cache_examples=True)
|
67 |
|
68 |
demo.launch()
|
|
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
|
9 |
+
SAMPLE_RATE=16000
|
10 |
+
|
11 |
if torch.cuda.is_available():
|
12 |
device = "cuda"
|
13 |
torch_dtype = torch.float16
|
|
|
23 |
generator = torch.Generator(device)
|
24 |
|
25 |
|
26 |
+
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=10, random_seed=0, controlnet_conditioning_scale=1, num_inference_steps=20, guidance_scale=2.5, guess_mode=False):
|
27 |
if isinstance(midi_file, _TemporaryFileWrapper):
|
28 |
midi_file = midi_file.name
|
29 |
midi = PrettyMIDI(midi_file)
|
30 |
+
midi_synth = midi.synthesize(fs=SAMPLE_RATE)[:int(SAMPLE_RATE*audio_length_in_s)]
|
31 |
+
midi_synth = midi_synth.reshape(midi_synth.shape[0], 1)
|
32 |
audio = pipe(
|
33 |
prompt,
|
34 |
negative_prompt=negative_prompt,
|
|
|
40 |
generator=generator.manual_seed(int(random_seed)),
|
41 |
guidance_scale=float(guidance_scale),
|
42 |
)
|
43 |
+
return (SAMPLE_RATE, midi_synth), (SAMPLE_RATE, audio.audios.T)
|
44 |
+
|
45 |
|
46 |
with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])) as demo:
|
47 |
gr.HTML(
|
|
|
57 |
midi = gr.File(label="midi file", file_types=[".mid"])
|
58 |
prompt = gr.Textbox(label="prompt", info="Enter a descriptive text prompt to guide the audio generation.")
|
59 |
with gr.Column(variant='panel'):
|
60 |
+
synth = gr.Audio(label="synthesized audio")
|
61 |
+
audio = gr.Audio(label="generated audio")
|
62 |
with gr.Accordion("Advanced Settings", open=False):
|
63 |
duration = gr.Slider(0, 30, value=10, step=2.5, label="duration", info="Modify the duration in seconds of the output audio file.")
|
64 |
inf = gr.Slider(0, 50, value=20, step=1, label="inference steps", info="Edit the number of denoising steps. A larger number usually leads to higher quality but slower results.")
|
|
|
68 |
cond = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale", info="Choose a value between 0 and 1. The larger the more it will take the conditioning into account. Lower values are recommended for more creative prompts.")
|
69 |
guess = gr.Checkbox(label="guess mode", info="Optionally select guess mode. If so, the model will try to recognize the content of the MIDI without the need of a text prompt.")
|
70 |
btn = gr.Button("Generate")
|
71 |
+
btn.click(predict, inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], outputs=[synth, audio])
|
72 |
gr.Examples(examples=[["S00.mid", "piano", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "violin", "", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "woman singing, studio recording", "noise", 10, 25, 1.0, 20, 2.5, False], ["S00.mid", "jazz band, clean", "noise", 10, 25, 0.8, 20, 2.5, False], ["S00.mid", "choir", "noise, percussion", 10, 25, 0.7, 20, 2.5, False]], inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guidance_scale, guess], fn=predict, outputs=audio, cache_examples=True)
|
73 |
|
74 |
demo.launch()
|