ldkong commited on
Commit
d5f2bf5
β€’
1 Parent(s): 962160a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -22
app.py CHANGED
@@ -1,25 +1,53 @@
 
 
 
 
1
  import gradio as gr
2
 
3
- def calculator(num1, operation, num2):
4
- if operation == "add":
5
- return num1 + num2
6
- elif operation == "subtract":
7
- return num1 - num2
8
- elif operation == "multiply":
9
- return num1 * num2
10
- elif operation == "divide":
11
- return num1 / num2
12
-
13
- def sampler(body, bottomwear, hair, topwear):
14
- img_name = str(body) + str(bottomwear) + str(hair) + str(topwear)
15
- return img_name
16
-
17
-
18
- demo = gr.Interface(
19
- sampler,
20
- ["number", gr.Radio(["body", "bottomwear", "hair", "topwear"]), "number"],
21
- "number",
22
- live=True,
23
- )
24
 
25
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from huggingface_hub import hf_hub_download
4
+ from torchvision.utils import save_image
5
  import gradio as gr
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ class Generator(nn.Module):
9
+ # Refer to the link below for explanations about nc, nz, and ngf
10
+ # https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#inputs
11
+ def __init__(self, nc=4, nz=100, ngf=64):
12
+ super(Generator, self).__init__()
13
+ self.network = nn.Sequential(
14
+ nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False),
15
+ nn.BatchNorm2d(ngf * 4),
16
+ nn.ReLU(True),
17
+ nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
18
+ nn.BatchNorm2d(ngf * 2),
19
+ nn.ReLU(True),
20
+ nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False),
21
+ nn.BatchNorm2d(ngf),
22
+ nn.ReLU(True),
23
+ nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
24
+ nn.Tanh(),
25
+ )
26
+
27
+ def forward(self, input):
28
+ output = self.network(input)
29
+ return output
30
+
31
+
32
+ model = Generator()
33
+ weights_path = hf_hub_download('nateraw/cryptopunks-gan', 'generator.pth')
34
+ model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) # Use 'cuda' if you have a GPU available
35
+
36
+
37
+ def predict(seed, num_punks):
38
+ torch.manual_seed(seed)
39
+ z = torch.randn(num_punks, 100, 1, 1)
40
+ punks = model(z)
41
+ save_image(punks, "punks.png", normalize=True)
42
+ return 'punks.png'
43
+
44
+ gr.Interface(
45
+ predict,
46
+ inputs=[
47
+ gr.Slider(0, 1000, label='Seed', default=42),
48
+ gr.Slider(4, 64, label='Number of Punks', step=1, default=10),
49
+ ],
50
+ outputs="image",
51
+ examples=[[123, 15], [42, 29], [456, 8], [1337, 35]],
52
+ live=True,
53
+ ).launch(cache_examples=True)