BotNews / rag.py
leandrocarneiro's picture
Upload 3 files
f966467 verified
raw
history blame
5.3 kB
# Created by Leandro Carneiro at 19/01/2024
# Description:
# ------------------------------------------------
#from langchain.embeddings import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
import os
import csv
def read_csv_to_dict(filename):
data_dict = {}
with open(filename, mode='r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
for row in csv_reader:
key, value = row[0].split(';')
data_dict[key] = value
return data_dict
def generate_embeddings_and_vectorstore(path):
try:
loader = DirectoryLoader(path=path, glob="**/*.txt")
corpus = loader.load()
print(f' Total de documentos antes do text_split = {len(corpus)}')
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=400)
docs = text_splitter.split_documents(corpus)
num_total_characters = sum([len(x.page_content) for x in docs])
print(f" Total de chunks depois do text_split = {len(docs)}")
print(f" Média de caracteres por chunk = {num_total_characters / len(docs):,.0f}")
dict_filename_url = read_csv_to_dict('./local_base/filename_url.csv')
for doc in docs:
filename = os.path.basename(doc.metadata["source"])
doc.metadata["link"] = dict_filename_url.get(filename)
#print('docs')
#print(docs)
fc_embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_KEY'])
vectorstore = Chroma.from_documents(docs, fc_embeddings)
print('total de docs no vectorstore=',len(vectorstore.get()['documents']))
return vectorstore
except Exception as e:
print(str(e))
return str(e)
class Rag:
def __init__(self, vectorstore, min_words, max_words):
self.text = None
self.vectorstore = vectorstore
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key="answer")
#
#Do not use only your knowledge to make the news.
prompt_template = """Your task is to create news for a newspaper based on pieces of text delimited by <> and a question delimited by <>.
Do not use only your knowledge to make the news. Make the news based on the question, but using the pieces of text.
If the pieces of text don't enough information about the question to create the news, just say that you need more sources of information, nothing more.
The news should have a title.
The news should be written in a formal language.
The news should have between {min_words} and {max_words} words and it should be in Portuguese language.
The news should be about the following context: <{context}>
Question: <{question}>
Answer here:"""
self.prompt = PromptTemplate(template=prompt_template,
input_variables=["context", "question"],
partial_variables={"min_words": min_words, "max_words": max_words})
self.qa = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0125", #0125 #1106
temperature=0,
openai_api_key=os.environ['OPENAI_KEY'],
max_tokens=int(int(max_words) + (int(max_words) / 2))), #número máximo de tokens para a resposta
memory=self.memory,
# retriever=vectorstore.as_retriever(search_type='similarity_score_threshold',
# search_kwargs={'k':4, 'score_threshold':0.8}), #search_kwargs={'k': 3}
retriever=vectorstore.as_retriever(),
combine_docs_chain_kwargs={"prompt": self.prompt},
chain_type="stuff",#map_reduce, refine, map_rerank
return_source_documents=True,
)
def generate_text(self, subject):
try:
query = f"Elabore uma nova notícia sobre {subject}."
result_text = self.qa.invoke({"question": query})
print('##### result', result_text)
list_result_sources = []
str_result_sources = ''
for doc in result_text["source_documents"]:
list_result_sources.append(doc.metadata['link'])
result_sources = list(set(list_result_sources))
for i in range(len(result_sources)):
str_result_sources += f'{i + 1}) {result_sources[i]}' + '\n'
self.vectorstore.delete_collection()
return (result_text["answer"], str_result_sources)
except Exception as e:
self.vectorstore.delete_collection()
return str(e)