File size: 13,817 Bytes
9992ded
52b8e70
 
 
 
 
 
 
9992ded
e1092cb
52b8e70
 
 
9992ded
1471306
a6fc871
52b8e70
 
cf4c3c3
 
 
 
e1092cb
 
ed190ed
e1092cb
 
 
cf4c3c3
 
 
e1092cb
 
52b8e70
 
 
 
5bd9791
1471306
5bd9791
1471306
5bd9791
 
 
 
 
 
 
 
 
 
52b8e70
25c6551
 
 
95b3113
 
9992ded
 
cf4c3c3
52b8e70
 
ed190ed
 
52b8e70
cf4c3c3
 
 
 
 
 
 
865009c
 
 
 
 
 
f67712d
865009c
f67712d
cf4c3c3
1471306
cf4c3c3
 
1471306
 
 
 
 
 
 
 
cf4c3c3
1471306
 
 
865009c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b8e70
25c6551
ed190ed
865009c
5bd9791
865009c
 
 
5bd9791
169efdf
1471306
5bd9791
 
 
169efdf
5bd9791
 
 
 
 
 
 
 
 
 
 
 
169efdf
 
 
 
cf4c3c3
 
 
 
 
 
 
 
 
 
 
95b3113
25c6551
 
 
cf4c3c3
 
169efdf
cf4c3c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169efdf
 
 
 
 
 
 
 
 
cf4c3c3
169efdf
cf4c3c3
169efdf
 
 
 
 
 
 
52b8e70
ed190ed
 
 
 
 
865009c
ed190ed
 
169efdf
5bd9791
ed190ed
 
 
 
 
5bd9791
ed190ed
 
 
 
 
52b8e70
 
cf4c3c3
 
 
52b8e70
cf4c3c3
 
738a752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4c3c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed190ed
a6fc871
ed190ed
 
 
 
 
 
 
 
 
a6fc871
 
 
 
 
 
 
 
 
cf4c3c3
a6fc871
cf4c3c3
a6fc871
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import itertools as it
import os
import tempfile
from io import StringIO

import joblib
import numpy as np
import pandas as pd
import pkg_resources
# page set up
import streamlit as st
from b3clf.descriptor_padel import compute_descriptors
from b3clf.geometry_opt import geometry_optimize
from b3clf.utils import get_descriptors, scale_descriptors, select_descriptors
# from PIL import Image
from streamlit_extras.let_it_rain import rain
from streamlit_ketcher import st_ketcher

from utils import generate_predictions, load_all_models

st.cache_data.clear()

st.set_page_config(
    page_title="BBB Permeability Prediction with Imbalanced Learning",
    # page_icon="🧊",
    layout="wide",
    # initial_sidebar_state="expanded",
    # menu_items={
    #     "Get Help": "https://www.extremelycoolapp.com/help",
    #     "Report a bug": "https://www.extremelycoolapp.com/bug",
    #     "About": "# This is a header. This is an *extremely* cool app!"
    # }
)


keep_features = "no"
keep_sdf = "no"
classifiers_dict = {
    "decision tree": "dtree",
    "kNN": "knn",
    "logistic regression": "logreg",
    "XGBoost": "xgb",
}
resample_methods_dict = {
    "random undersampling": "classic_RandUndersampling",
    "SMOTE": "classic_SMOTE",
    "Borderline SMOTE": "borderline_SMOTE",
    "k-means SMOTE": "kmeans_SMOTE",
    "ADASYN": "classic_ADASYN",
    "no resampling": "common",
}

pandas_display_options = {
    "line_limit": 50,
}
mol_features = None
info_df = None
results = None
temp_file_path = None
all_models = load_all_models()

# Create the Streamlit app
st.title(":blue[BBB Permeability Prediction with Imbalanced Learning]")
info_column, upload_column = st.columns(2)

# inatialize the molecule features and info dataframe session state
if "mol_features" not in st.session_state:
    st.session_state.mol_features = None
if "info_df" not in st.session_state:
    st.session_state.info_df = None


# download sample files
with info_column:
    st.subheader("About `B3clf`")
    # fmt: off
    st.markdown(
        """
        `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf. This project is supported by Digital Research Alliance of Canada (originally known as Compute Canada) and NSERC. This project is maintained by QC-Dev comminity. For further information and inquiries please contact us at [email protected]."""
    )
    st.text(" \n")
    # text_body = """
    # `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf.
    # """
    # st.markdown(f"<p align="justify">{text_body}</p>",
    #             unsafe_allow_html=True)

    # image = Image.open("images/b3clf_workflow.png")
    # st.image(image=image, use_column_width=True)

    # image_path = "images/b3clf_workflow.png"
    # image_width_percent = 80
    # info_column.markdown(
    #     f"<img src="{image_path}" style="max-width: {image_width_percent}%; height: auto;">",
    #     unsafe_allow_html=True
    #     )

    # fmt: on
    sdf_col, smi_col = st.columns(2)
    with sdf_col:
        # uneven columns
        # st.columns((2, 1, 1, 1))
        # two subcolumns for sample input files
        # download sample sdf
        # st.markdown(" \n \n")
        with open("sample_input.sdf", "r") as file_sdf:
            btn = st.download_button(
                label="Download SDF sample file",
                data=file_sdf,
                file_name="sample_input.sdf",
            )
    with smi_col:
        with open("sample_input_smiles.csv", "r") as file_smi:
            btn = st.download_button(
                label="Download SMILES sample file",
                data=file_smi,
                file_name="sample_input_smiles.csv",
            )

# Create a file uploader
with upload_column:
    st.subheader("Model Selection")
    with st.container():
        algorithm_col, resampler_col = st.columns(2)
        # algorithm and resampling method selection column
        with algorithm_col:
            classifier = st.selectbox(
                label="Classification Algorithm:",
                options=("XGBoost", "kNN", "decision tree", "logistic regression"),
            )
        with resampler_col:
            resampler = st.selectbox(
                label="Resampling Method:",
                options=(
                    "ADASYN",
                    "random undersampling",
                    "Borderline SMOTE",
                    "k-means SMOTE",
                    "SMOTE",
                    "no resampling",
                ),
            )

        # horizontal line
        st.divider()
        # upload_col, submit_job_col = st.columns((2, 1))
        upload_col, _, submit_job_col, _ = st.columns((4, 0.05, 1, 0.05))
        # upload file column
        with upload_col:
            # session state tracking of the file uploader
            if "uploaded_file" not in st.session_state:
                st.session_state.uploaded_file = None
            if "uploaded_file_changed" not in st.session_state:
                st.session_state.uploaded_file_changed = False

            # def update_uploader_session_info():
            #     """Update the session state of the file uploader."""
            #     st.session_state.uploaded_file = uploaded_file

            uploaded_file = st.file_uploader(
                label="Upload a CSV, SDF, TXT or SMI file",
                type=["csv", "sdf", "txt", "smi"],
                help="Input molecule file only supports *.csv, *.sdf, *.txt and *.smi.",
                accept_multiple_files=False,
                # key="uploaded_file",
                # on_change=update_uploader_session_info,
            )

            if uploaded_file:
                # st.write(f"the uploaded file: {uploaded_file}")
                # when new file is uploaded is different from the previous one
                if st.session_state.uploaded_file != uploaded_file:
                    st.session_state.uploaded_file_changed = True
                else:
                    st.session_state.uploaded_file_changed = False
                st.session_state.uploaded_file = uploaded_file
                # when new file is the same as the previous one
                # else:
                #     st.session_state.uploaded_file_changed = False
                # st.session_state.uploaded_file = uploaded_file

            # set session state for the file uploader
            # st.write(f"the state of uploaded file: {st.session_state.uploaded_file}")
            # st.write(f"the state of uploaded file changed: {st.session_state.uploaded_file_changed}")

        # submit job column
        with submit_job_col:
            st.text(" \n")
            st.text(" \n")
            st.markdown(
                "<div style='display: flex; justify-content: center;'>",
                unsafe_allow_html=True,
            )
            submit_job_button = st.button(
                label="Submit Job", type="secondary", key="job_button"
            )
        # submit_job_col.markdown("<div style="display: flex; justify-content: center;">",
        #                         unsafe_allow_html=True)
        # submit_job_button = submit_job_col.button(
        #     label="Submit job", key="submit_job_button", type="secondary"
        # )
        # submit_job_col.markdown("</div>", unsafe_allow_html=True)


# st.write("The content of the file will be displayed below once uploaded.")
# if file:
# if "csv" in file.name or "txt" in file.name:
#     st.write(file.read().decode("utf-8"))
# st.write(file)


feature_column, prediction_column = st.columns(2)
with feature_column:
    st.subheader("Molecular Features")

    placeholder_features = st.empty()
    # placeholder_features = pd.DataFrame(index=[1, 2, 3, 4],
    #                                     columns=["ID", "nAcid", "ALogP", "Alogp2",
    #                                              "AMR", "naAromAtom", "nH", "nN"])
    # st.dataframe(placeholder_features)
    # placeholder_features.text("molecular features")

with prediction_column:
    st.subheader("Predictions")
    # placeholder_predictions = st.empty()
    # placeholder_predictions.text("prediction")


st.write(
    f"the state of uploaded file changed before checking: {st.session_state.uploaded_file_changed}"
)
# Generate predictions when the user uploads a file
# if submit_job_button:

# if "job_button" in st.session_state:
#     when new file is uploaded
#     update_uploader_session_info()
#     st.write(
#         f"the state of uploaded file changed after checking: {st.session_state.uploaded_file_changed}"
#     )
#     if st.session_state.uploaded_file_changed:
#         temp_dir = tempfile.mkdtemp()
#         # Create a temporary file path for the uploaded file
#         temp_file_path = os.path.join(temp_dir, uploaded_file.name)
#         # Save the uploaded file to the temporary file path
#         with open(temp_file_path, "wb") as temp_file:
#             temp_file.write(uploaded_file.read())

#         mol_features, info_df, results = generate_predictions(
#             input_fname=temp_file_path,
#             sep="\s+|\t+",
#             clf=classifiers_dict[classifier],
#             _models_dict=all_models,
#             sampling=resample_methods_dict[resampler],
#             time_per_mol=120,
#             mol_features=None,
#             info_df=None,
#         )
#         st.session_state.mol_features = mol_features
#         st.session_state.info_df = info_df
#     else:
#         mol_features, info_df, results = generate_predictions(
#             input_fname=None,
#             sep="\s+|\t+",
#             clf=classifiers_dict[classifier],
#             _models_dict=all_models,
#             sampling=resample_methods_dict[resampler],
#             time_per_mol=120,
#             mol_features=st.session_state.mol_features,
#             info_df=st.session_state.info_df,
#         )
if submit_job_button and uploaded_file:
    temp_dir = tempfile.mkdtemp()
    # Create a temporary file path for the uploaded file
    temp_file_path = os.path.join(temp_dir, uploaded_file.name)
    # Save the uploaded file to the temporary file path
    with open(temp_file_path, "wb") as temp_file:
        temp_file.write(uploaded_file.read())
    mol_features, info_df, results = generate_predictions(
        input_fname=temp_file_path,
        sep="\s+|\t+",
        clf=classifiers_dict[classifier],
        _models_dict=all_models,
        sampling=resample_methods_dict[resampler],
        time_per_mol=120,
        mol_features=None,
        info_df=None,
    )

    # feture table
    with feature_column:
        if mol_features is not None:
            selected_feature_rows = np.min(
                [mol_features.shape[0], pandas_display_options["line_limit"]]
            )
            st.dataframe(mol_features.iloc[:selected_feature_rows, :], hide_index=False)
            # placeholder_features.dataframe(mol_features, hide_index=False)
            feature_file_name = uploaded_file.name.split(".")[0] + "_b3clf_features.csv"
            features_csv = mol_features.to_csv(index=True)
            st.download_button(
                "Download features as CSV",
                data=features_csv,
                file_name=feature_file_name,
            )
    # prediction table
    with prediction_column:
        # st.subheader("Predictions")
        if results is not None:
            # Display the predictions in a table
            selected_result_rows = np.min(
                [results.shape[0], pandas_display_options["line_limit"]]
            )
            results_df_display = results.iloc[:selected_result_rows, :].style.format(
                {"B3clf_predicted_probability": "{:.6f}".format}
            )
            st.dataframe(results_df_display, hide_index=True)
            # Add a button to download the predictions as a CSV file
            predictions_csv = results.to_csv(index=True)
            results_file_name = (
                uploaded_file.name.split(".")[0] + "_b3clf_predictions.csv"
            )
            st.download_button(
                "Download predictions as CSV",
                data=predictions_csv,
                file_name=results_file_name,
            )
            # indicate the success of the job
            # rain(
            #     emoji="🎈",
            #     font_size=54,
            #     falling_speed=5,
            #     animation_length=10,
            # )
    st.balloons()


# hide footer
# https://github.com/streamlit/streamlit/issues/892
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

# add google analytics
st.markdown(
    """
    <!-- Google tag (gtag.js) -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-WG8QYRELP9"></script>
    <script>
      window.dataLayer = window.dataLayer || [];
      function gtag(){dataLayer.push(arguments);}
      gtag("js", new Date());

      gtag("config", "G-WG8QYRELP9");
    </script>
    """,
    unsafe_allow_html=True,
)