Spaces:
Sleeping
Sleeping
File size: 13,817 Bytes
9992ded 52b8e70 9992ded e1092cb 52b8e70 9992ded 1471306 a6fc871 52b8e70 cf4c3c3 e1092cb ed190ed e1092cb cf4c3c3 e1092cb 52b8e70 5bd9791 1471306 5bd9791 1471306 5bd9791 52b8e70 25c6551 95b3113 9992ded cf4c3c3 52b8e70 ed190ed 52b8e70 cf4c3c3 865009c f67712d 865009c f67712d cf4c3c3 1471306 cf4c3c3 1471306 cf4c3c3 1471306 865009c 52b8e70 25c6551 ed190ed 865009c 5bd9791 865009c 5bd9791 169efdf 1471306 5bd9791 169efdf 5bd9791 169efdf cf4c3c3 95b3113 25c6551 cf4c3c3 169efdf cf4c3c3 169efdf cf4c3c3 169efdf cf4c3c3 169efdf 52b8e70 ed190ed 865009c ed190ed 169efdf 5bd9791 ed190ed 5bd9791 ed190ed 52b8e70 cf4c3c3 52b8e70 cf4c3c3 738a752 27f70b5 cf4c3c3 ed190ed a6fc871 ed190ed a6fc871 cf4c3c3 a6fc871 cf4c3c3 a6fc871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import itertools as it
import os
import tempfile
from io import StringIO
import joblib
import numpy as np
import pandas as pd
import pkg_resources
# page set up
import streamlit as st
from b3clf.descriptor_padel import compute_descriptors
from b3clf.geometry_opt import geometry_optimize
from b3clf.utils import get_descriptors, scale_descriptors, select_descriptors
# from PIL import Image
from streamlit_extras.let_it_rain import rain
from streamlit_ketcher import st_ketcher
from utils import generate_predictions, load_all_models
st.cache_data.clear()
st.set_page_config(
page_title="BBB Permeability Prediction with Imbalanced Learning",
# page_icon="🧊",
layout="wide",
# initial_sidebar_state="expanded",
# menu_items={
# "Get Help": "https://www.extremelycoolapp.com/help",
# "Report a bug": "https://www.extremelycoolapp.com/bug",
# "About": "# This is a header. This is an *extremely* cool app!"
# }
)
keep_features = "no"
keep_sdf = "no"
classifiers_dict = {
"decision tree": "dtree",
"kNN": "knn",
"logistic regression": "logreg",
"XGBoost": "xgb",
}
resample_methods_dict = {
"random undersampling": "classic_RandUndersampling",
"SMOTE": "classic_SMOTE",
"Borderline SMOTE": "borderline_SMOTE",
"k-means SMOTE": "kmeans_SMOTE",
"ADASYN": "classic_ADASYN",
"no resampling": "common",
}
pandas_display_options = {
"line_limit": 50,
}
mol_features = None
info_df = None
results = None
temp_file_path = None
all_models = load_all_models()
# Create the Streamlit app
st.title(":blue[BBB Permeability Prediction with Imbalanced Learning]")
info_column, upload_column = st.columns(2)
# inatialize the molecule features and info dataframe session state
if "mol_features" not in st.session_state:
st.session_state.mol_features = None
if "info_df" not in st.session_state:
st.session_state.info_df = None
# download sample files
with info_column:
st.subheader("About `B3clf`")
# fmt: off
st.markdown(
"""
`B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf. This project is supported by Digital Research Alliance of Canada (originally known as Compute Canada) and NSERC. This project is maintained by QC-Dev comminity. For further information and inquiries please contact us at [email protected]."""
)
st.text(" \n")
# text_body = """
# `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf.
# """
# st.markdown(f"<p align="justify">{text_body}</p>",
# unsafe_allow_html=True)
# image = Image.open("images/b3clf_workflow.png")
# st.image(image=image, use_column_width=True)
# image_path = "images/b3clf_workflow.png"
# image_width_percent = 80
# info_column.markdown(
# f"<img src="{image_path}" style="max-width: {image_width_percent}%; height: auto;">",
# unsafe_allow_html=True
# )
# fmt: on
sdf_col, smi_col = st.columns(2)
with sdf_col:
# uneven columns
# st.columns((2, 1, 1, 1))
# two subcolumns for sample input files
# download sample sdf
# st.markdown(" \n \n")
with open("sample_input.sdf", "r") as file_sdf:
btn = st.download_button(
label="Download SDF sample file",
data=file_sdf,
file_name="sample_input.sdf",
)
with smi_col:
with open("sample_input_smiles.csv", "r") as file_smi:
btn = st.download_button(
label="Download SMILES sample file",
data=file_smi,
file_name="sample_input_smiles.csv",
)
# Create a file uploader
with upload_column:
st.subheader("Model Selection")
with st.container():
algorithm_col, resampler_col = st.columns(2)
# algorithm and resampling method selection column
with algorithm_col:
classifier = st.selectbox(
label="Classification Algorithm:",
options=("XGBoost", "kNN", "decision tree", "logistic regression"),
)
with resampler_col:
resampler = st.selectbox(
label="Resampling Method:",
options=(
"ADASYN",
"random undersampling",
"Borderline SMOTE",
"k-means SMOTE",
"SMOTE",
"no resampling",
),
)
# horizontal line
st.divider()
# upload_col, submit_job_col = st.columns((2, 1))
upload_col, _, submit_job_col, _ = st.columns((4, 0.05, 1, 0.05))
# upload file column
with upload_col:
# session state tracking of the file uploader
if "uploaded_file" not in st.session_state:
st.session_state.uploaded_file = None
if "uploaded_file_changed" not in st.session_state:
st.session_state.uploaded_file_changed = False
# def update_uploader_session_info():
# """Update the session state of the file uploader."""
# st.session_state.uploaded_file = uploaded_file
uploaded_file = st.file_uploader(
label="Upload a CSV, SDF, TXT or SMI file",
type=["csv", "sdf", "txt", "smi"],
help="Input molecule file only supports *.csv, *.sdf, *.txt and *.smi.",
accept_multiple_files=False,
# key="uploaded_file",
# on_change=update_uploader_session_info,
)
if uploaded_file:
# st.write(f"the uploaded file: {uploaded_file}")
# when new file is uploaded is different from the previous one
if st.session_state.uploaded_file != uploaded_file:
st.session_state.uploaded_file_changed = True
else:
st.session_state.uploaded_file_changed = False
st.session_state.uploaded_file = uploaded_file
# when new file is the same as the previous one
# else:
# st.session_state.uploaded_file_changed = False
# st.session_state.uploaded_file = uploaded_file
# set session state for the file uploader
# st.write(f"the state of uploaded file: {st.session_state.uploaded_file}")
# st.write(f"the state of uploaded file changed: {st.session_state.uploaded_file_changed}")
# submit job column
with submit_job_col:
st.text(" \n")
st.text(" \n")
st.markdown(
"<div style='display: flex; justify-content: center;'>",
unsafe_allow_html=True,
)
submit_job_button = st.button(
label="Submit Job", type="secondary", key="job_button"
)
# submit_job_col.markdown("<div style="display: flex; justify-content: center;">",
# unsafe_allow_html=True)
# submit_job_button = submit_job_col.button(
# label="Submit job", key="submit_job_button", type="secondary"
# )
# submit_job_col.markdown("</div>", unsafe_allow_html=True)
# st.write("The content of the file will be displayed below once uploaded.")
# if file:
# if "csv" in file.name or "txt" in file.name:
# st.write(file.read().decode("utf-8"))
# st.write(file)
feature_column, prediction_column = st.columns(2)
with feature_column:
st.subheader("Molecular Features")
placeholder_features = st.empty()
# placeholder_features = pd.DataFrame(index=[1, 2, 3, 4],
# columns=["ID", "nAcid", "ALogP", "Alogp2",
# "AMR", "naAromAtom", "nH", "nN"])
# st.dataframe(placeholder_features)
# placeholder_features.text("molecular features")
with prediction_column:
st.subheader("Predictions")
# placeholder_predictions = st.empty()
# placeholder_predictions.text("prediction")
st.write(
f"the state of uploaded file changed before checking: {st.session_state.uploaded_file_changed}"
)
# Generate predictions when the user uploads a file
# if submit_job_button:
# if "job_button" in st.session_state:
# when new file is uploaded
# update_uploader_session_info()
# st.write(
# f"the state of uploaded file changed after checking: {st.session_state.uploaded_file_changed}"
# )
# if st.session_state.uploaded_file_changed:
# temp_dir = tempfile.mkdtemp()
# # Create a temporary file path for the uploaded file
# temp_file_path = os.path.join(temp_dir, uploaded_file.name)
# # Save the uploaded file to the temporary file path
# with open(temp_file_path, "wb") as temp_file:
# temp_file.write(uploaded_file.read())
# mol_features, info_df, results = generate_predictions(
# input_fname=temp_file_path,
# sep="\s+|\t+",
# clf=classifiers_dict[classifier],
# _models_dict=all_models,
# sampling=resample_methods_dict[resampler],
# time_per_mol=120,
# mol_features=None,
# info_df=None,
# )
# st.session_state.mol_features = mol_features
# st.session_state.info_df = info_df
# else:
# mol_features, info_df, results = generate_predictions(
# input_fname=None,
# sep="\s+|\t+",
# clf=classifiers_dict[classifier],
# _models_dict=all_models,
# sampling=resample_methods_dict[resampler],
# time_per_mol=120,
# mol_features=st.session_state.mol_features,
# info_df=st.session_state.info_df,
# )
if submit_job_button and uploaded_file:
temp_dir = tempfile.mkdtemp()
# Create a temporary file path for the uploaded file
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
# Save the uploaded file to the temporary file path
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
mol_features, info_df, results = generate_predictions(
input_fname=temp_file_path,
sep="\s+|\t+",
clf=classifiers_dict[classifier],
_models_dict=all_models,
sampling=resample_methods_dict[resampler],
time_per_mol=120,
mol_features=None,
info_df=None,
)
# feture table
with feature_column:
if mol_features is not None:
selected_feature_rows = np.min(
[mol_features.shape[0], pandas_display_options["line_limit"]]
)
st.dataframe(mol_features.iloc[:selected_feature_rows, :], hide_index=False)
# placeholder_features.dataframe(mol_features, hide_index=False)
feature_file_name = uploaded_file.name.split(".")[0] + "_b3clf_features.csv"
features_csv = mol_features.to_csv(index=True)
st.download_button(
"Download features as CSV",
data=features_csv,
file_name=feature_file_name,
)
# prediction table
with prediction_column:
# st.subheader("Predictions")
if results is not None:
# Display the predictions in a table
selected_result_rows = np.min(
[results.shape[0], pandas_display_options["line_limit"]]
)
results_df_display = results.iloc[:selected_result_rows, :].style.format(
{"B3clf_predicted_probability": "{:.6f}".format}
)
st.dataframe(results_df_display, hide_index=True)
# Add a button to download the predictions as a CSV file
predictions_csv = results.to_csv(index=True)
results_file_name = (
uploaded_file.name.split(".")[0] + "_b3clf_predictions.csv"
)
st.download_button(
"Download predictions as CSV",
data=predictions_csv,
file_name=results_file_name,
)
# indicate the success of the job
# rain(
# emoji="🎈",
# font_size=54,
# falling_speed=5,
# animation_length=10,
# )
st.balloons()
# hide footer
# https://github.com/streamlit/streamlit/issues/892
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# add google analytics
st.markdown(
"""
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-WG8QYRELP9"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-WG8QYRELP9");
</script>
""",
unsafe_allow_html=True,
)
|