b3clf_hf / app.py
Fanwang Meng
Add temp patch
27f70b5
raw
history blame
13.8 kB
import itertools as it
import os
import tempfile
from io import StringIO
import joblib
import numpy as np
import pandas as pd
import pkg_resources
# page set up
import streamlit as st
from b3clf.descriptor_padel import compute_descriptors
from b3clf.geometry_opt import geometry_optimize
from b3clf.utils import get_descriptors, scale_descriptors, select_descriptors
# from PIL import Image
from streamlit_extras.let_it_rain import rain
from streamlit_ketcher import st_ketcher
from utils import generate_predictions, load_all_models
st.cache_data.clear()
st.set_page_config(
page_title="BBB Permeability Prediction with Imbalanced Learning",
# page_icon="🧊",
layout="wide",
# initial_sidebar_state="expanded",
# menu_items={
# "Get Help": "https://www.extremelycoolapp.com/help",
# "Report a bug": "https://www.extremelycoolapp.com/bug",
# "About": "# This is a header. This is an *extremely* cool app!"
# }
)
keep_features = "no"
keep_sdf = "no"
classifiers_dict = {
"decision tree": "dtree",
"kNN": "knn",
"logistic regression": "logreg",
"XGBoost": "xgb",
}
resample_methods_dict = {
"random undersampling": "classic_RandUndersampling",
"SMOTE": "classic_SMOTE",
"Borderline SMOTE": "borderline_SMOTE",
"k-means SMOTE": "kmeans_SMOTE",
"ADASYN": "classic_ADASYN",
"no resampling": "common",
}
pandas_display_options = {
"line_limit": 50,
}
mol_features = None
info_df = None
results = None
temp_file_path = None
all_models = load_all_models()
# Create the Streamlit app
st.title(":blue[BBB Permeability Prediction with Imbalanced Learning]")
info_column, upload_column = st.columns(2)
# inatialize the molecule features and info dataframe session state
if "mol_features" not in st.session_state:
st.session_state.mol_features = None
if "info_df" not in st.session_state:
st.session_state.info_df = None
# download sample files
with info_column:
st.subheader("About `B3clf`")
# fmt: off
st.markdown(
"""
`B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf. This project is supported by Digital Research Alliance of Canada (originally known as Compute Canada) and NSERC. This project is maintained by QC-Dev comminity. For further information and inquiries please contact us at [email protected]."""
)
st.text(" \n")
# text_body = """
# `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf.
# """
# st.markdown(f"<p align="justify">{text_body}</p>",
# unsafe_allow_html=True)
# image = Image.open("images/b3clf_workflow.png")
# st.image(image=image, use_column_width=True)
# image_path = "images/b3clf_workflow.png"
# image_width_percent = 80
# info_column.markdown(
# f"<img src="{image_path}" style="max-width: {image_width_percent}%; height: auto;">",
# unsafe_allow_html=True
# )
# fmt: on
sdf_col, smi_col = st.columns(2)
with sdf_col:
# uneven columns
# st.columns((2, 1, 1, 1))
# two subcolumns for sample input files
# download sample sdf
# st.markdown(" \n \n")
with open("sample_input.sdf", "r") as file_sdf:
btn = st.download_button(
label="Download SDF sample file",
data=file_sdf,
file_name="sample_input.sdf",
)
with smi_col:
with open("sample_input_smiles.csv", "r") as file_smi:
btn = st.download_button(
label="Download SMILES sample file",
data=file_smi,
file_name="sample_input_smiles.csv",
)
# Create a file uploader
with upload_column:
st.subheader("Model Selection")
with st.container():
algorithm_col, resampler_col = st.columns(2)
# algorithm and resampling method selection column
with algorithm_col:
classifier = st.selectbox(
label="Classification Algorithm:",
options=("XGBoost", "kNN", "decision tree", "logistic regression"),
)
with resampler_col:
resampler = st.selectbox(
label="Resampling Method:",
options=(
"ADASYN",
"random undersampling",
"Borderline SMOTE",
"k-means SMOTE",
"SMOTE",
"no resampling",
),
)
# horizontal line
st.divider()
# upload_col, submit_job_col = st.columns((2, 1))
upload_col, _, submit_job_col, _ = st.columns((4, 0.05, 1, 0.05))
# upload file column
with upload_col:
# session state tracking of the file uploader
if "uploaded_file" not in st.session_state:
st.session_state.uploaded_file = None
if "uploaded_file_changed" not in st.session_state:
st.session_state.uploaded_file_changed = False
# def update_uploader_session_info():
# """Update the session state of the file uploader."""
# st.session_state.uploaded_file = uploaded_file
uploaded_file = st.file_uploader(
label="Upload a CSV, SDF, TXT or SMI file",
type=["csv", "sdf", "txt", "smi"],
help="Input molecule file only supports *.csv, *.sdf, *.txt and *.smi.",
accept_multiple_files=False,
# key="uploaded_file",
# on_change=update_uploader_session_info,
)
if uploaded_file:
# st.write(f"the uploaded file: {uploaded_file}")
# when new file is uploaded is different from the previous one
if st.session_state.uploaded_file != uploaded_file:
st.session_state.uploaded_file_changed = True
else:
st.session_state.uploaded_file_changed = False
st.session_state.uploaded_file = uploaded_file
# when new file is the same as the previous one
# else:
# st.session_state.uploaded_file_changed = False
# st.session_state.uploaded_file = uploaded_file
# set session state for the file uploader
# st.write(f"the state of uploaded file: {st.session_state.uploaded_file}")
# st.write(f"the state of uploaded file changed: {st.session_state.uploaded_file_changed}")
# submit job column
with submit_job_col:
st.text(" \n")
st.text(" \n")
st.markdown(
"<div style='display: flex; justify-content: center;'>",
unsafe_allow_html=True,
)
submit_job_button = st.button(
label="Submit Job", type="secondary", key="job_button"
)
# submit_job_col.markdown("<div style="display: flex; justify-content: center;">",
# unsafe_allow_html=True)
# submit_job_button = submit_job_col.button(
# label="Submit job", key="submit_job_button", type="secondary"
# )
# submit_job_col.markdown("</div>", unsafe_allow_html=True)
# st.write("The content of the file will be displayed below once uploaded.")
# if file:
# if "csv" in file.name or "txt" in file.name:
# st.write(file.read().decode("utf-8"))
# st.write(file)
feature_column, prediction_column = st.columns(2)
with feature_column:
st.subheader("Molecular Features")
placeholder_features = st.empty()
# placeholder_features = pd.DataFrame(index=[1, 2, 3, 4],
# columns=["ID", "nAcid", "ALogP", "Alogp2",
# "AMR", "naAromAtom", "nH", "nN"])
# st.dataframe(placeholder_features)
# placeholder_features.text("molecular features")
with prediction_column:
st.subheader("Predictions")
# placeholder_predictions = st.empty()
# placeholder_predictions.text("prediction")
st.write(
f"the state of uploaded file changed before checking: {st.session_state.uploaded_file_changed}"
)
# Generate predictions when the user uploads a file
# if submit_job_button:
print(st.session_state)
if "job_button" in st.session_state:
# when new file is uploaded
# update_uploader_session_info()
st.write(
f"the state of uploaded file changed after checking: {st.session_state.uploaded_file_changed}"
)
# if st.session_state.uploaded_file_changed:
# temp_dir = tempfile.mkdtemp()
# # Create a temporary file path for the uploaded file
# temp_file_path = os.path.join(temp_dir, uploaded_file.name)
# # Save the uploaded file to the temporary file path
# with open(temp_file_path, "wb") as temp_file:
# temp_file.write(uploaded_file.read())
# mol_features, info_df, results = generate_predictions(
# input_fname=temp_file_path,
# sep="\s+|\t+",
# clf=classifiers_dict[classifier],
# _models_dict=all_models,
# sampling=resample_methods_dict[resampler],
# time_per_mol=120,
# mol_features=None,
# info_df=None,
# )
# st.session_state.mol_features = mol_features
# st.session_state.info_df = info_df
# else:
# mol_features, info_df, results = generate_predictions(
# input_fname=None,
# sep="\s+|\t+",
# clf=classifiers_dict[classifier],
# _models_dict=all_models,
# sampling=resample_methods_dict[resampler],
# time_per_mol=120,
# mol_features=st.session_state.mol_features,
# info_df=st.session_state.info_df,
# )
temp_dir = tempfile.mkdtemp()
# Create a temporary file path for the uploaded file
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
# Save the uploaded file to the temporary file path
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
mol_features, info_df, results = generate_predictions(
input_fname=temp_file_path,
sep="\s+|\t+",
clf=classifiers_dict[classifier],
_models_dict=all_models,
sampling=resample_methods_dict[resampler],
time_per_mol=120,
mol_features=None,
info_df=None,
)
# feture table
with feature_column:
if mol_features is not None:
selected_feature_rows = np.min(
[mol_features.shape[0], pandas_display_options["line_limit"]]
)
st.dataframe(mol_features.iloc[:selected_feature_rows, :], hide_index=False)
# placeholder_features.dataframe(mol_features, hide_index=False)
feature_file_name = uploaded_file.name.split(".")[0] + "_b3clf_features.csv"
features_csv = mol_features.to_csv(index=True)
st.download_button(
"Download features as CSV",
data=features_csv,
file_name=feature_file_name,
)
# prediction table
with prediction_column:
# st.subheader("Predictions")
if results is not None:
# Display the predictions in a table
selected_result_rows = np.min(
[results.shape[0], pandas_display_options["line_limit"]]
)
results_df_display = results.iloc[:selected_result_rows, :].style.format(
{"B3clf_predicted_probability": "{:.6f}".format}
)
st.dataframe(results_df_display, hide_index=True)
# Add a button to download the predictions as a CSV file
predictions_csv = results.to_csv(index=True)
results_file_name = (
uploaded_file.name.split(".")[0] + "_b3clf_predictions.csv"
)
st.download_button(
"Download predictions as CSV",
data=predictions_csv,
file_name=results_file_name,
)
# indicate the success of the job
# rain(
# emoji="🎈",
# font_size=54,
# falling_speed=5,
# animation_length=10,
# )
st.balloons()
# hide footer
# https://github.com/streamlit/streamlit/issues/892
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# add google analytics
st.markdown(
"""
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-WG8QYRELP9"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-WG8QYRELP9");
</script>
""",
unsafe_allow_html=True,
)