import itertools as it import os import tempfile from io import StringIO import joblib import numpy as np import pandas as pd import pkg_resources # page set up import streamlit as st from b3clf.descriptor_padel import compute_descriptors from b3clf.geometry_opt import geometry_optimize from b3clf.utils import get_descriptors, scale_descriptors, select_descriptors # from PIL import Image from streamlit_extras.let_it_rain import rain from streamlit_ketcher import st_ketcher st.set_page_config( page_title="BBB Permeability Prediction with Imbalanced Learning", # page_icon="🧊", layout="wide", # initial_sidebar_state="expanded", # menu_items={ # 'Get Help': 'https://www.extremelycoolapp.com/help', # 'Report a bug': "https://www.extremelycoolapp.com/bug", # 'About': "# This is a header. This is an *extremely* cool app!" # } ) keep_features = "no" keep_sdf = "no" classifiers_dict = { "decision tree": "dtree", "kNN": "knn", "logistic regression": "logreg", "XGBoost": "xgb", } resample_methods_dict = { "random undersampling": "classic_RandUndersampling", "SMOTE": "classic_SMOTE", "Borderline SMOTE": "borderline_SMOTE", "k-means SMOTE": "kmeans_SMOTE", "ADASYN": "classic_ADASYN", "no resampling": "common", } pandas_display_options = { "line_limit": 50, } mol_features = None info_df = None results = None temp_file_path = None @st.cache_data def load_all_models(): """Get b3clf fitted classifier""" clf_list = ["dtree", "knn", "logreg", "xgb"] sampling_list = [ "borderline_SMOTE", "classic_ADASYN", "classic_RandUndersampling", "classic_SMOTE", "kmeans_SMOTE", "common", ] model_dict = {} package_name = "b3clf" for clf_str, sampling_str in it.product(clf_list, sampling_list): # joblib_fpath = os.path.join( # dirname, "pre_trained", "b3clf_{}_{}.joblib".format(clf_str, sampling_str)) # pred_model = joblib.load(joblib_fpath) joblib_path_str = f"pre_trained/b3clf_{clf_str}_{sampling_str}.joblib" with pkg_resources.resource_stream(package_name, joblib_path_str) as f: pred_model = joblib.load(f) model_dict[clf_str + "_" + sampling_str] = pred_model return model_dict @st.cache_resource def predict_permeability(clf_str, sampling_str, mol_features, info_df, threshold="none"): """Compute permeability prediction for given feature data.""" # load the model pred_model = load_all_models()[clf_str + "_" + sampling_str] # load the threshold data package_name = "b3clf" with pkg_resources.resource_stream( package_name, "data/B3clf_thresholds.xlsx" ) as f: df_thres = pd.read_excel(f, index_col=0, engine="openpyxl") # default threshold is 0.5 label_pool = np.zeros(mol_features.shape[0], dtype=int) if type(mol_features) == pd.DataFrame: if mol_features.index.tolist() != info_df.index.tolist(): raise ValueError( "Features_df and Info_df do not have the same index." ) # get predicted probabilities info_df.loc[:, "B3clf_predicted_probability"] = pred_model.predict_proba(mol_features)[ :, 1 ] # get predicted label from probability using the threshold mask = np.greater_equal( info_df["B3clf_predicted_probability"].to_numpy(), # df_thres.loc[clf_str + "-" + sampling_str, threshold]) df_thres.loc["xgb-classic_ADASYN", threshold], ) label_pool[mask] = 1 # save the predicted labels info_df["B3clf_predicted_label"] = label_pool info_df.reset_index(inplace=True) return info_df # @st.cache_resource def generate_predictions( input_fname: str = None, sep: str = "\s+|\t+", clf: str = "xgb", sampling: str = "classic_ADASYN", time_per_mol: int = 120, mol_features: pd.DataFrame = None, info_df: pd.DataFrame = None, ): """ Generate predictions for a given input file. """ if mol_features is None and info_df is None: # mol_tag = os.path.splitext(uploaded_file.name)[0] # uploaded_file = uploaded_file.read().decode("utf-8") mol_tag = os.path.basename(input_fname).split(".")[0] internal_sdf = f"{mol_tag}_optimized_3d.sdf" # Geometry optimization # Input: # * Either an SDF file with molecular geometries or a text file with SMILES strings geometry_optimize(input_fname=input_fname, output_sdf=internal_sdf, sep=sep) df_features = compute_descriptors( sdf_file=internal_sdf, excel_out=None, output_csv=None, timeout=None, time_per_molecule=time_per_mol, ) # st.write(df_features) # Get computed descriptors mol_features, info_df = get_descriptors(df=df_features) # Select descriptors mol_features = select_descriptors(df=mol_features) # Scale descriptors mol_features.iloc[:, :] = scale_descriptors(df=mol_features) # this is problematic for using the same file for calculation if os.path.exists(internal_sdf) and keep_sdf == "no": os.remove(internal_sdf) # Get classifier # clf = get_clf(clf_str=clf, sampling_str=sampling) # Get classifier result_df = predict_permeability( clf_str=clf, sampling_str=sampling, mol_features=mol_features, info_df=info_df, threshold="none", ) # Get classifier display_cols = [ "ID", "SMILES", "B3clf_predicted_probability", "B3clf_predicted_label", ] result_df = result_df[ [col for col in result_df.columns.to_list() if col in display_cols] ] return mol_features, info_df, result_df # Create the Streamlit app st.title(":blue[BBB Permeability Prediction with Imbalanced Learning]") info_column, upload_column = st.columns(2) # download sample files with info_column: st.subheader("About `B3clf`") # fmt: off st.markdown( """ `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf. This project is supported by Digital Research Alliance of Canada (originally known as Compute Canada) and NSERC. This project is maintained by QC-Dev comminity. For further information and inquiries please contact us at qcdevs@gmail.com.""" ) st.text(" \n") # text_body = ''' # `B3clf` is a Python package for predicting the blood-brain barrier (BBB) permeability of small molecules using imbalanced learning. It supports decision tree, XGBoost, kNN, logistical regression and 5 resampling strategies (SMOTE, Borderline SMOTE, k-means SMOTE and ADASYN). The workflow of `B3clf` is summarized as below. The Source code and more details are available at https://github.com/theochem/B3clf. # ''' # st.markdown(f'
{text_body}
', # unsafe_allow_html=True) # image = Image.open("images/b3clf_workflow.png") # st.image(image=image, use_column_width=True) # image_path = "images/b3clf_workflow.png" # image_width_percent = 80 # info_column.markdown( # f'', # unsafe_allow_html=True # ) # fmt: on sdf_col, smi_col = st.columns(2) with sdf_col: # uneven columns # st.columns((2, 1, 1, 1)) # two subcolumns for sample input files # download sample sdf # st.markdown(" \n \n") with open("sample_input.sdf", "r") as file_sdf: btn = st.download_button( label="Download SDF sample file", data=file_sdf, file_name="sample_input.sdf", ) with smi_col: with open("sample_input_smiles.csv", "r") as file_smi: btn = st.download_button( label="Download SMILES sample file", data=file_smi, file_name="sample_input_smiles.csv", ) # Create a file uploader with upload_column: st.subheader("Model Selection") with st.container(): algorithm_col, resampler_col = st.columns(2) # algorithm and resampling method selection column with algorithm_col: classifier = st.selectbox( label="Classification Algorithm:", options=("XGBoost", "kNN", "decision tree", "logistic regression"), ) with resampler_col: resampler = st.selectbox( label="Resampling Method:", options=( "ADASYN", "random undersampling", "Borderline SMOTE", "k-means SMOTE", "SMOTE", "no resampling", ), ) # horizontal line st.divider() # upload_col, submit_job_col = st.columns((2, 1)) upload_col, _, submit_job_col, _ = st.columns((4, 0.05, 1, 0.05)) # upload file column with upload_col: file = st.file_uploader( label="Upload a CSV, SDF, TXT or SMI file", type=["csv", "sdf", "txt", "smi"], help="Input molecule file only supports *.csv, *.sdf, *.txt and *.smi.", accept_multiple_files=False, ) # submit job column with submit_job_col: st.text(" \n") st.text(" \n") st.markdown( "