geowizard / app1.py
lemonaddie's picture
Update app1.py
a4cfff6 verified
raw
history blame
9.05 kB
import spaces
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
@spaces.GPU
def process(
pipe,
path_input,
ensemble_size,
denoise_steps,
processing_res,
domain,
normal_out_vis=None,
path_out_fp32=None,
path_out_vis=None,
):
if path_out_vis is not None:
return (
[normal_out_vis, path_out_vis],
[normal_out_vis, path_out_fp32, path_out_vis],
)
input_image = Image.open(path_input)
# pipe_out = pipe(
# input_image,
# ensemble_size=ensemble_size,
# denoising_steps=denoise_steps,
# processing_res=processing_res,
# domain=domain,
# batch_size=1 if processing_res == 0 else 0,
# show_progress_bar=True,
# )
pipe_out = pipe(
input_image,
denoising_steps=3,
ensemble_size=1,
processing_res=768,
batch_size=0,
guidance_scale=3,
domain="indoor",
show_progress_bar=True,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
normal_colored = pipe_out.normal_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
#np.save(path_out_fp32, depth_pred)
#Image.fromarray(normal_out_vis).save(normal_out_vis)
depth_colored.save(path_out_vis)
return (
[normal_out_vis, path_out_vis],
[normal_out_vis, path_out_fp32, path_out_vis],
)
def run_demo_server(pipe):
process_pipe = functools.partial(process, pipe)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="Marigold Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">GeoWizard</h1>
<p align="center">
<a title="Website" href="https://fuxiao0719.github.io/projects/geowizard/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2403.12013" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/fuxiao0719/GeoWizard" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/fuxiao0719/GeoWizard" alt="badge-github-stars">
</a>
</p>
<p align="justify">
GeoWizard is a Wizard who spells 3D geometry from a single image.
Upload your image into the <b>left</b> side.
</p>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Accordion("Advanced options", open=False):
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=20,
step=1,
value=1,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
domain = gr.Radio(
[
("indoor", "indoor"),
("outdoor", "outdoor"),
("object", "object"),
],
label="scene type",
value='indoor',
)
input_output_16bit = gr.File(
label="Predicted depth (16-bit)",
visible=False,
)
input_output_fp32 = gr.File(
label="Predicted depth (32-bit)",
visible=False,
)
input_output_vis = gr.File(
label="Predicted depth (red-near, blue-far)",
visible=False,
)
with gr.Row():
submit_btn = gr.Button(value="Compute Depth", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Column():
output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain]
blocks_settings = blocks_settings_depth
map_id_to_default = {b._id: b.value for b in blocks_settings}
inputs = [
input_image,
ensemble_size,
denoise_steps,
processing_res,
domain,
input_output_16bit,
input_output_fp32,
input_output_vis,
]
outputs = [
submit_btn,
input_image,
output_slider,
files,
]
def submit_depth_fn(*args):
out = list(process_pipe(*args))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
submit_btn.click(
fn=submit_depth_fn,
inputs=inputs,
outputs=outputs,
concurrency_limit=1,
)
def clear_fn():
out = []
for b in blocks_settings:
out.append(map_id_to_default[b._id])
out += [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None, None, None, None, None, None, None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=blocks_settings + [
submit_btn,
input_image,
input_output_16bit,
input_output_fp32,
input_output_vis,
output_slider,
files,
],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to('cuda')
run_demo_server(pipe)
if __name__ == "__main__":
main()