ChatTTS-Forge / modules /generate_audio.py
zhzluke96
update
374f426
raw
history blame
3.98 kB
import numpy as np
import torch
from modules.speaker import Speaker
from modules.utils.SeedContext import SeedContext
from modules import models, config
import logging
import gc
from modules.devices import devices
from typing import Union
from modules.utils.cache import conditional_cache
logger = logging.getLogger(__name__)
def generate_audio(
text: str,
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
use_decoder: bool = True,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
):
(sample_rate, wav) = generate_audio_batch(
[text],
temperature=temperature,
top_P=top_P,
top_K=top_K,
spk=spk,
infer_seed=infer_seed,
use_decoder=use_decoder,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
)[0]
return (sample_rate, wav)
@torch.inference_mode()
def generate_audio_batch(
texts: list[str],
temperature: float = 0.3,
top_P: float = 0.7,
top_K: float = 20,
spk: Union[int, Speaker] = -1,
infer_seed: int = -1,
use_decoder: bool = True,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
):
chat_tts = models.load_chat_tts()
params_infer_code = {
"spk_emb": None,
"temperature": temperature,
"top_P": top_P,
"top_K": top_K,
"prompt1": prompt1 or "",
"prompt2": prompt2 or "",
"prefix": prefix or "",
"repetition_penalty": 1.0,
"disable_tqdm": config.runtime_env_vars.off_tqdm,
}
if isinstance(spk, int):
with SeedContext(spk):
params_infer_code["spk_emb"] = chat_tts.sample_random_speaker()
logger.info(("spk", spk))
elif isinstance(spk, Speaker):
params_infer_code["spk_emb"] = spk.emb
logger.info(("spk", spk.name))
else:
raise ValueError("spk must be int or Speaker")
logger.info(
{
"text": texts,
"infer_seed": infer_seed,
"temperature": temperature,
"top_P": top_P,
"top_K": top_K,
"prompt1": prompt1 or "",
"prompt2": prompt2 or "",
"prefix": prefix or "",
}
)
with SeedContext(infer_seed):
wavs = chat_tts.generate_audio(
texts, params_infer_code, use_decoder=use_decoder
)
sample_rate = 24000
if config.auto_gc:
devices.torch_gc()
gc.collect()
return [(sample_rate, np.array(wav).flatten().astype(np.float32)) for wav in wavs]
lru_cache_enabled = False
def setup_lru_cache():
global generate_audio_batch
global lru_cache_enabled
if lru_cache_enabled:
return
lru_cache_enabled = True
def should_cache(*args, **kwargs):
spk_seed = kwargs.get("spk", -1)
infer_seed = kwargs.get("infer_seed", -1)
return spk_seed != -1 and infer_seed != -1
lru_size = config.runtime_env_vars.lru_size
if isinstance(lru_size, int):
generate_audio_batch = conditional_cache(lru_size, should_cache)(
generate_audio_batch
)
logger.info(f"LRU cache enabled with size {lru_size}")
else:
logger.debug(f"LRU cache failed to enable, invalid size {lru_size}")
if __name__ == "__main__":
import soundfile as sf
# 测试batch生成
inputs = ["你好[lbreak]", "再见[lbreak]", "长度不同的文本片段[lbreak]"]
outputs = generate_audio_batch(inputs, spk=5, infer_seed=42)
for i, (sample_rate, wav) in enumerate(outputs):
print(i, sample_rate, wav.shape)
sf.write(f"batch_{i}.wav", wav, sample_rate, format="wav")
# 单独生成
for i, text in enumerate(inputs):
sample_rate, wav = generate_audio(text, spk=5, infer_seed=42)
print(i, sample_rate, wav.shape)
sf.write(f"one_{i}.wav", wav, sample_rate, format="wav")