make api
Browse files- .gitignore +8 -0
- app.py +4 -16
- examples.py +25 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.png
|
2 |
+
*.jpg
|
3 |
+
.idea/
|
4 |
+
__pycache__/
|
5 |
+
flagged
|
6 |
+
gfpgan
|
7 |
+
output
|
8 |
+
|
app.py
CHANGED
@@ -7,24 +7,14 @@ from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
7 |
from gfpgan.utils import GFPGANer
|
8 |
from huggingface_hub import snapshot_download, hf_hub_download
|
9 |
from realesrgan.utils import RealESRGANer
|
|
|
10 |
|
11 |
REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
|
12 |
GFPGAN_REPO_ID = 'leonelhs/gfpgan'
|
13 |
|
14 |
os.system("pip freeze")
|
15 |
|
16 |
-
|
17 |
-
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
18 |
-
'lincoln.jpg')
|
19 |
-
torch.hub.download_url_to_file(
|
20 |
-
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
21 |
-
'AI-generate.jpg')
|
22 |
-
torch.hub.download_url_to_file(
|
23 |
-
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
24 |
-
'Blake_Lively.jpg')
|
25 |
-
torch.hub.download_url_to_file(
|
26 |
-
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
27 |
-
'10045.png')
|
28 |
|
29 |
# background enhancer with RealESRGAN
|
30 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
@@ -36,7 +26,7 @@ os.makedirs('output', exist_ok=True)
|
|
36 |
|
37 |
|
38 |
# def inference(img, version, scale, weight):
|
39 |
-
def
|
40 |
# weight /= 100
|
41 |
print(img, version, scale)
|
42 |
if scale > 4:
|
@@ -125,12 +115,10 @@ If you have any question, please email 📧 `[email protected]` or `xintao
|
|
125 |
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
126 |
"""
|
127 |
demo = gr.Interface(
|
128 |
-
|
129 |
gr.Image(type="filepath", label="Input"),
|
130 |
-
# gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
|
131 |
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
|
132 |
gr.Number(label="Rescaling factor", value=2),
|
133 |
-
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
|
134 |
], [
|
135 |
gr.Image(type="numpy", label="Output (The whole image)"),
|
136 |
gr.File(label="Download the output image")
|
|
|
7 |
from gfpgan.utils import GFPGANer
|
8 |
from huggingface_hub import snapshot_download, hf_hub_download
|
9 |
from realesrgan.utils import RealESRGANer
|
10 |
+
import examples
|
11 |
|
12 |
REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
|
13 |
GFPGAN_REPO_ID = 'leonelhs/gfpgan'
|
14 |
|
15 |
os.system("pip freeze")
|
16 |
|
17 |
+
examples.download()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# background enhancer with RealESRGAN
|
20 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
|
26 |
|
27 |
|
28 |
# def inference(img, version, scale, weight):
|
29 |
+
def predict(img, version, scale):
|
30 |
# weight /= 100
|
31 |
print(img, version, scale)
|
32 |
if scale > 4:
|
|
|
115 |
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
116 |
"""
|
117 |
demo = gr.Interface(
|
118 |
+
predict, [
|
119 |
gr.Image(type="filepath", label="Input"),
|
|
|
120 |
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
|
121 |
gr.Number(label="Rescaling factor", value=2),
|
|
|
122 |
], [
|
123 |
gr.Image(type="numpy", label="Output (The whole image)"),
|
124 |
gr.File(label="Download the output image")
|
examples.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
examples = [
|
4 |
+
{
|
5 |
+
'name': 'lincoln.jpg',
|
6 |
+
'url': 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg'
|
7 |
+
},
|
8 |
+
{
|
9 |
+
'name': 'AI-generate.jpg',
|
10 |
+
'url': 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg'
|
11 |
+
},
|
12 |
+
{
|
13 |
+
'name': 'Blake_Lively.jpg',
|
14 |
+
'url': 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg'
|
15 |
+
},
|
16 |
+
{
|
17 |
+
'name': '10045.png',
|
18 |
+
'url': 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png'
|
19 |
+
}
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def download():
|
24 |
+
for example in examples:
|
25 |
+
torch.hub.download_url_to_file(example['url'], example['name'])
|