Spaces:
Runtime error
Runtime error
import PIL.Image | |
import cv2 | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import onnxruntime as rt | |
from PIL import ImageOps | |
from carvekit.trimap.generator import TrimapGenerator | |
from pymatting import estimate_alpha_cf, estimate_foreground_ml, stack_images, load_image | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx") | |
rmbg_model = rt.InferenceSession(model_path, providers=providers) | |
trimapGenerator = TrimapGenerator() | |
# def custom_background(background, foreground): | |
# foreground = ImageOps.contain(foreground, background.size) | |
# x = (background.size[0] - foreground.size[0]) // 2 | |
# y = (background.size[1] - foreground.size[1]) // 2 | |
# background.paste(foreground, (x, y), foreground) | |
# return background | |
def custom_background(background: PIL.Image.Image, foreground: np.ndarray): | |
final_foreground = PIL.Image.fromarray(foreground) | |
x = (background.size[0] - final_foreground.size[0]) / 2 | |
y = (background.size[1] - final_foreground.size[1]) / 2 | |
box = (x, y, final_foreground.size[0] + x, final_foreground.size[1] + y) | |
crop = background.crop(box) | |
final_image = crop.copy() | |
# put the foreground in the centre of the background | |
paste_box = (0, final_image.size[1] - final_foreground.size[1], final_image.size[0], final_image.size[1]) | |
final_image.paste(final_foreground, paste_box, mask=final_foreground) | |
return np.array(final_image) | |
def get_mask(img, s=1024): | |
img = (img / 255).astype(np.float32) | |
h, w = h0, w0 = img.shape[:-1] | |
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) | |
ph, pw = s - h, s - w | |
img_input = np.zeros([s, s, 3], dtype=np.float32) | |
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) | |
img_input = np.transpose(img_input, (2, 0, 1)) | |
img_input = img_input[np.newaxis, :] | |
mask = rmbg_model.run(None, {'img': img_input})[0][0] | |
mask = np.transpose(mask, (1, 2, 0)) | |
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] | |
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis] | |
return mask | |
def change_background_color(image, color="blue"): | |
mask = get_mask(image) | |
image = (mask * image + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
image = np.concatenate([image, mask], axis=2, dtype=np.uint8) | |
image = PIL.Image.fromarray(image) | |
background = PIL.Image.new('RGB', image.size, color) | |
background.paste(image, (0, 0), image) | |
return background | |
def generate_trimap(probs, size=7, conf_threshold=0.95): | |
""" | |
This function creates a trimap based on simple dilation algorithm | |
Inputs [3]: an image with probabilities of each pixel being the foreground, size of dilation kernel, | |
foreground confidence threshold | |
Output : a trimap | |
""" | |
mask = (probs > 0.05).astype(np.uint8) * 255 | |
pixels = 2 * size + 1 | |
kernel = np.ones((pixels, pixels), np.uint8) | |
dilation = cv2.dilate(mask, kernel, iterations=1) | |
remake = np.zeros_like(mask) | |
remake[dilation == 255] = 127 # Set every pixel within dilated region as probably foreground. | |
remake[probs > conf_threshold] = 255 # Set every pixel with large enough probability as definitely foreground. | |
return remake | |
def image2gray(image): | |
image = PIL.Image.fromarray(image).convert("L") | |
return np.array(image) / 255.0 | |
def paste(img_orig, alpha): | |
img_ = img_orig.astype(np.float32) / 255 | |
alpha_ = cv2.resize(alpha, (img_.shape[1], img_.shape[0]), cv2.INTER_LANCZOS4) | |
fg_alpha = np.concatenate([img_, alpha_[:, :, np.newaxis]], axis=2) | |
cv2.imwrite("new_back.png", (fg_alpha * 255).astype(np.uint8)) | |
def predict(image, new_background): | |
mask = get_mask(image) | |
mask = (mask * 255).astype(np.uint8) | |
mask = mask.repeat(3, axis=2) | |
trimap = generate_trimap(mask) | |
trimap = image2gray(trimap) | |
# trimap = load_image("images/trimaps/lemur_trimap.png", "GRAY") | |
original = PIL.Image.fromarray(image) | |
# mask = image2gray(mask) | |
mask = PIL.Image.fromarray(mask).convert("L") | |
trimap = trimapGenerator(original_image=original, mask=mask) | |
trimap = np.array(trimap) / 255.0 | |
foreground = image / 255 | |
alpha = estimate_alpha_cf(foreground, trimap) | |
foreground = estimate_foreground_ml(foreground, alpha) | |
cutout = stack_images(foreground, alpha) | |
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8) | |
if new_background is not None: | |
return mask, trimap, custom_background(new_background, cutout) | |
return alpha, trimap, cutout | |
# contours | |
def serendipity(image, new_background): | |
mask = get_mask(image) | |
mask = 255 - mask | |
image = (mask * image + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
image = np.concatenate([image, mask], axis=2, dtype=np.uint8) | |
return mask, image | |
def negative(image, new_background): | |
mask = get_mask(image) | |
image = (mask * image + 255 * (1 - mask)).astype(np.uint8) | |
image = 255 - image | |
mask = (mask * 255).astype(np.uint8) | |
image = np.concatenate([image, mask], axis=2, dtype=np.uint8) | |
return mask, image | |
def checkit(image, new_background): | |
mask = get_mask(image) | |
mask = 255 - mask | |
image = (mask / image - 255 / (1 + mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
mask = 255 - mask | |
image = np.concatenate([image, mask], axis=2, dtype=np.uint8) | |
mask = mask.repeat(3, axis=2) | |
# if new_background is not None: | |
# foreground = PIL.Image.fromarray(image) | |
# return mask, custom_background(new_background, foreground) | |
return mask, image | |
footer = r""" | |
<center> | |
<b> | |
Demo based on <a href='https://github.com/SkyTNT/anime-segmentation'>SkyTNT Anime Segmentation</a> | |
</b> | |
</center> | |
""" | |
with gr.Blocks(title="Face Shine") as app: | |
gr.HTML("<center><h1>Anime Remove Background</h1></center>") | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(type="numpy", image_mode="RGB", label="Input image") | |
new_img = gr.Image(type="pil", image_mode="RGBA", label="Custom background") | |
run_btn = gr.Button(variant="primary") | |
with gr.Column(): | |
with gr.Accordion(label="Image mask", open=False): | |
output_mask = gr.Image(type="numpy", label="mask") | |
output_trimap = gr.Image(type="numpy", label="trimap") | |
output_img = gr.Image(type="numpy", label="result") | |
run_btn.click(predict, [input_img, new_img], [output_mask, output_trimap, output_img]) | |
with gr.Row(): | |
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] | |
examples = gr.Dataset(components=[input_img], samples=examples_data) | |
examples.click(lambda x: x[0], [examples], [input_img]) | |
with gr.Row(): | |
gr.HTML(footer) | |
app.launch(share=False, debug=True, enable_queue=True, show_error=True) | |