import os import gradio as gr import torch from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from huggingface_hub import hf_hub_download from realesrgan.utils import RealESRGANer REALESRGAN_REPO_ID = 'leonelhs/realesrgan' GFPGAN_REPO_ID = 'leonelhs/gfpgan' os.system("pip freeze") def showGPU(): if torch.cuda.is_available(): devices = torch.cuda.device_count() current = torch.cuda.current_device() return f"Running on GPU:{current} of {devices} total devices" return "Running on CPU" def download_model_gfpgan(file): return hf_hub_download(repo_id=GFPGAN_REPO_ID, filename=file) def download_model_realesrgan(file): return hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename=file) def select_upsampler(version, netscale=4): model = None dni_weight = None version = version + ".pth" model_path = download_model_realesrgan(version) if version == 'RealESRGAN_x4plus.pth': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) if version == 'RealESRNet_x4plus.pth': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) if version == 'AI-Forever_x4plus.pth': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) if version == 'RealESRGAN_x4plus_anime_6B.pth': # x4 RRDBNet model with 6 blocks model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) if version == 'RealESRGAN_x2plus.pth': # x2 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 # This is if version == 'AI-Forever_x2plus.pth': # x2 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 # This is if version == 'realesr-animevideov3.pth': # x4 VGG-style model (XS size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') if version == 'realesr-general-x4v3.pth': # x4 VGG-style model (S size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = [ download_model_realesrgan("realesr-general-x4v3.pth"), download_model_realesrgan("realesr-general-wdn-x4v3.pth") ] dni_weight = [0.2, 0.8] half = True if torch.cuda.is_available() else False return RealESRGANer( scale=netscale, model_path=model_path, dni_weight=dni_weight, model=model, tile=0, tile_pad=10, pre_pad=0, half=half, gpu_id=0) def select_face_enhancer(version, scale, upsampler): if 'v1.2' in version: model_path = download_model_gfpgan('GFPGANv1.2.pth') return GFPGANer( model_path=model_path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif 'v1.3' in version: model_path = download_model_gfpgan('GFPGANv1.3.pth') return GFPGANer( model_path=model_path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif 'v1.4' in version: model_path = download_model_gfpgan('GFPGANv1.4.pth') return GFPGANer( model_path=model_path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif 'RestoreFormer' in version: model_path = download_model_gfpgan('RestoreFormer.pth') return GFPGANer( model_path=model_path, upscale=scale, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) def predict(image, version_upsampler, version_enhancer, scale): scale = int(scale) upsampler = select_upsampler(version_upsampler) if "No additional" not in version_enhancer: face_enhancer = select_face_enhancer(version_enhancer, scale, upsampler) _, _, output = face_enhancer.enhance(image, has_aligned=False, only_center_face=False, paste_back=True) else: output, _ = upsampler.enhance(image, outscale=scale) log = f"General enhance version: {version_upsampler}\n " \ f"Face enhance version: {version_enhancer} \n " \ f"Scale:{scale} \n {showGPU()}" return output, log title = "Super Face" description = r""" Practical Image Restoration Algorithm based on Real-ESRGAN, GFPGAN """ article = r"""