Spaces:
Sleeping
Sleeping
File size: 1,939 Bytes
54801aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import os
import torch
from PIL import Image
from peft import PeftConfig, PeftModel
from transformers import AutoProcessor, Blip2ForConditionalGeneration
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
peft_model_id = "leoreigoto/Data2_V2_BLIP2_Finetune_Caption_First_Epoch"
config = PeftConfig.from_pretrained(peft_model_id)
blip_finetune = Blip2ForConditionalGeneration.from_pretrained(config.base_model_name_or_path)#, load_in_8bit=True, device_map="auto")
blip_finetune = PeftModel.from_pretrained(blip_finetune, peft_model_id)
qa_model = pipeline("question-answering", "timpal0l/mdeberta-v3-base-squad2")
def generate_caption(pred_image):
inputs = processor(pred_image, return_tensors="pt").to(device, torch.float16)
generated_ids = blip_finetune.generate(**inputs, max_new_tokens=50)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
def prompt_run(pred_image,prompt_box):
generated_text = generate_caption(pred_image)
generated_text = qa_model(question = prompt_box, context = generated_text)
return generated_text['answer']
with gr.Blocks() as gradio_app:
with gr.Row():
pred_image = gr.Image(height=480,width= 480,image_mode='RGB',type="pil")
with gr.Column():
button_caption = gr.Button(value='Get image caption (description)',size='sm')
prompt_box = gr.Textbox(label="Prompt",placeholder='enter prompt here')
button_prompt = gr.Button(value='Run prompt',size='sm')
with gr.Column():
output_box = gr.Textbox(label="Model output", placeholder='model output')
button_prompt.click(prompt_run,inputs=[pred_image,prompt_box], outputs=[output_box])
button_caption.click(generate_caption,inputs=[pred_image], outputs=[output_box])
gradio_app.launch()
|