Spaces:
Running
Running
Update fbeta_score.py
Browse files- fbeta_score.py +3 -3
fbeta_score.py
CHANGED
@@ -46,7 +46,7 @@ _KWARGS_DESCRIPTION = """
|
|
46 |
Args:
|
47 |
predictions (`list` of `int`): Predicted labels.
|
48 |
references (`list` of `int`): Ground truth labels.
|
49 |
-
beta (`float`): Determines the weight of recall in the combined score.
|
50 |
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
|
51 |
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
|
52 |
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
|
@@ -65,7 +65,7 @@ Examples:
|
|
65 |
|
66 |
Example 1-A simple binary example
|
67 |
>>> f_beta = evaluate.load("leslyarun/f_beta")
|
68 |
-
>>> results = f_beta.compute(references=[0, 1], predictions=[0, 1])
|
69 |
>>> print(results)
|
70 |
{'f_beta_score': 1.0}
|
71 |
"""
|
@@ -93,7 +93,7 @@ class F_Beta(evaluate.Metric):
|
|
93 |
)
|
94 |
|
95 |
|
96 |
-
def _compute(self, predictions, references, beta, labels=None, pos_label=1, average="binary", sample_weight=None):
|
97 |
score = fbeta_score(
|
98 |
references, predictions, beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight
|
99 |
)
|
|
|
46 |
Args:
|
47 |
predictions (`list` of `int`): Predicted labels.
|
48 |
references (`list` of `int`): Ground truth labels.
|
49 |
+
beta (`float`): Determines the weight of recall in the combined score. Defaults to 0.5
|
50 |
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
|
51 |
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
|
52 |
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
|
|
|
65 |
|
66 |
Example 1-A simple binary example
|
67 |
>>> f_beta = evaluate.load("leslyarun/f_beta")
|
68 |
+
>>> results = f_beta.compute(references=[0, 1], predictions=[0, 1], beta=0.5)
|
69 |
>>> print(results)
|
70 |
{'f_beta_score': 1.0}
|
71 |
"""
|
|
|
93 |
)
|
94 |
|
95 |
|
96 |
+
def _compute(self, predictions, references, beta=0.5, labels=None, pos_label=1, average="binary", sample_weight=None):
|
97 |
score = fbeta_score(
|
98 |
references, predictions, beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight
|
99 |
)
|