File size: 11,476 Bytes
a59bdc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from cProfile import run
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from complexRadar import ComplexRadar
import math
from zipfile import ZipFile
from glob import glob
import os
from BrainPulse import (dataset,
vector_space,
distance_matrix,
recurrence_quantification_analysis,
features_space,
plot)
# path
path = "./mne_data"
path2 = "./RPs"
# Remove the specified
# file path
try:
os.remove(path)
print("% s removed successfully" % path)
except:
pass
path = "./mne_data"
os.makedirs(path, exist_ok = True)
path1 = "./RPs"
os.makedirs(path1, exist_ok = True)
def run_computation(t_start, t_end, selected_subject, fir_filter, electrode_name, cut_freq, win_len, n_fft, percentile, run_list, options):
epochs, raw = dataset.eegbci_data(tmin=t_start, tmax=t_end,
subject=selected_subject,
filter_range=fir_filter,run_list=run_list)
s_rate = epochs.info['sfreq']
electrode_index = epochs.ch_names.index(electrode_name)
electrode_open = epochs.get_data()[0][electrode_index]
electrode_close = epochs.get_data()[1][electrode_index]
stft_open = vector_space.compute_stft(electrode_open,
n_fft=n_fft, win_len=win_len,
s_rate=epochs.info['sfreq'],
cut_freq=cut_freq)
stft_close = vector_space.compute_stft(electrode_close,
n_fft=n_fft, win_len=win_len,
s_rate=epochs.info['sfreq'],
cut_freq=cut_freq)
del raw
del electrode_open, electrode_close
# matrix_open = distance_matrix.EuclideanPyRQA_RP_stft(stft_open)
# matrix_close = distance_matrix.EuclideanPyRQA_RP_stft(stft_close)
matrix_open = distance_matrix.EuclideanPyRQA_RP_stft_cpu(stft_open)
matrix_close = distance_matrix.EuclideanPyRQA_RP_stft_cpu(stft_close)
nbr_open = np.percentile(matrix_open, percentile)
nbr_close = np.percentile(matrix_close, percentile)
matrix_open_binary = distance_matrix.set_epsilon(matrix_open,nbr_open)
matrix_close_binary = distance_matrix.set_epsilon(matrix_close,nbr_close)
del matrix_open, matrix_close
# matrix_open_to_plot = matrix_open_binary
# matrix_closed_to_plot = matrix_close_binary
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,8),dpi=200)
ax1.imshow(matrix_open_binary, cmap='Greys', origin='lower') #cividis
ax1.set_xticks(np.linspace(0, matrix_open_binary.shape[0] , ax1.get_xticks().shape[0]))
ax1.set_yticks(np.linspace(0, matrix_open_binary.shape[0] , ax1.get_xticks().shape[0]))
ax1.set_xticklabels([str(np.around(x,decimals=0)) for x in np.linspace(0, matrix_open_binary.shape[0] / s_rate, ax1.get_xticks().shape[0])])
ax1.set_yticklabels([str(np.around(x, decimals=0)) for x in np.linspace(0, matrix_open_binary.shape[0] / s_rate, ax1.get_yticks().shape[0])])
ax1.set_title(options[0]+' window size = 240 samples, ε = '+str(np.round(nbr_open,4)))
ax1.set_xlabel('time (s)')
ax1.set_ylabel('time (s)')
ax2.imshow(matrix_close_binary, cmap='Greys', origin='lower')
ax2.set_xticks(np.linspace(0, matrix_close_binary.shape[0] , ax1.get_xticks().shape[0]))
ax2.set_yticks(np.linspace(0, matrix_close_binary.shape[0] , ax1.get_xticks().shape[0]))
ax2.set_xticklabels([str(np.around(x,decimals=0)) for x in np.linspace(0, matrix_close_binary.shape[0] / s_rate, ax1.get_xticks().shape[0])])
ax2.set_yticklabels([str(np.around(x, decimals=0)) for x in np.linspace(0, matrix_close_binary.shape[0] / s_rate, ax2.get_yticks().shape[0])])
ax2.set_title(options[1]+' window size = 240 samples, ε = '+str(np.round(nbr_close,4)))
ax2.set_xlabel('time (s)')
ax2.set_ylabel('time (s)')
return fig, matrix_open_binary, matrix_close_binary, epochs, stft_open, stft_close
def plot_rqa(matrix_open_binary, matrix_close_binary, min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len,options):
categories = ['RR', 'DET', 'L', 'Lmax', 'DIV', 'Lentr', 'DET_RR', 'LAM', 'V', 'Vmax', 'Ventr', 'LAM_DET', 'W', 'Wmax', 'Wentr', 'TT']
result_rqa_open = recurrence_quantification_analysis.get_results(matrix_open_binary,min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len)
result_rqa_closed = recurrence_quantification_analysis.get_results(matrix_close_binary,min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len)
data = pd.DataFrame([result_rqa_open,result_rqa_closed], columns=categories)
data = data.drop(['RR', 'DIV', 'Lmax'],axis=1)
# print(data)
min_max_per_variable = data.describe().T[['min', 'max']]
min_max_per_variable['min'] = min_max_per_variable['min'].apply(lambda x: int(x))
min_max_per_variable['max'] = min_max_per_variable['max'].apply(lambda x: math.ceil(x))
# print(min_max_per_variable)
variables = data.columns
ranges = list(min_max_per_variable.itertuples(index=False, name=None))
format_cfg = {
#'axes_args':{'facecolor':'#84A8CD'},
'rad_ln_args': {'visible':True, 'linestyle':'dotted'},
'angle_ln_args':{'linestyle':'dotted'},
'outer_ring': {'visible':True, 'linestyle':'dotted'},
'rgrid_tick_lbls_args': {'fontsize':6},
'theta_tick_lbls': {'fontsize':9, 'backgroundcolor':'#355C7D', 'color':'#FFFFFF'},
'theta_tick_lbls_pad':3
}
fig = plt.figure(figsize=(5,3),dpi=100)
radar = ComplexRadar(fig, variables, ranges,n_ring_levels=3 ,show_scales=True, format_cfg=format_cfg)
custom_colors = ['#F67280', '#6C5B7B', '#355C7D']
k=0
for g,c in zip(data.index, custom_colors):
# radar.plot(data.loc[g].values, label=f"condition {g}", color=c, marker='o')
radar.plot(data.loc[g].values, label=options[k], color=c, marker='o')
radar.fill(data.loc[g].values, alpha=0.5, color=c)
k+=1
radar.use_legend(loc='upper left', bbox_to_anchor=(-0.4, 1.1), fontsize = 'xx-small') #, bbox_to_anchor=(0.15, -0.25),ncol=radar.plot_counter
return fig
def waterfall_spectrum(stft1, stft2, s_rate, cut_freq, options):
fig = plt.figure(figsize=(14, 12), dpi=150)
grid = plt.GridSpec(8, 8, hspace=0.0, wspace=3.5)
spectrogram1 = fig.add_subplot(grid[0:3, 0:4])
spectrogram2 = fig.add_subplot(grid[0:3, 4:])
spectrogram1.pcolormesh(stft1.T,cmap='viridis')
spectrogram1.xaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft1.shape[0], 5)))
spectrogram1.set_xticklabels([str(np.round(x, 1)) for x in np.linspace(0, stft1.shape[0] / s_rate, spectrogram1.get_xticks().shape[0])])
spectrogram1.yaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft1.shape[1], 5)))
spectrogram1.set_yticklabels([str(np.round(x, 1)) for x in np.linspace(0, cut_freq, 5)])
spectrogram1.set_ylabel('Freq (Hz)', )
spectrogram1.set_xlabel('Time (s)', )
spectrogram1.set_title(options[0] + ' Spectrogram', )
spectrogram2.pcolormesh(stft2.T,cmap='viridis')
spectrogram2.xaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft2.shape[0], 5)))
spectrogram2.set_xticklabels([str(np.round(x, 1)) for x in np.linspace(0, stft2.shape[0] / s_rate, spectrogram2.get_xticks().shape[0])])
spectrogram2.yaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft2.shape[1], 5)))
spectrogram2.set_yticklabels([str(np.round(x, 1)) for x in np.linspace(0, cut_freq, 5)])
spectrogram2.set_ylabel('Freq (Hz)', )
spectrogram2.set_xlabel('Time (s)', )
spectrogram2.set_title(options[1] +' Spectrogram', )
return fig
def save(matrix_open_binary, matrix_close_binary):
file_name_open = './RPs/subject-'+str(selected_subject)+'_electrode-'+electrode_name+'_percentile-'+str(percentile)+'_run-open_binary.npy'
np.save(file_name_open, np.asarray(matrix_close_binary, dtype=np.ubyte))
file_name_close = './RPs/subject-'+str(selected_subject)+'_electrode-'+electrode_name+'_percentile-'+str(percentile)+'_run-close_binary.npy'
np.save(file_name_close, np.asarray(matrix_close_binary, dtype=np.ubyte))
def download():
file_paths = glob('./RPs/*')
with ZipFile('download.zip','w') as zip:
for file in file_paths:
# writing each file one by one
zip.write(file)
return open('download.zip', 'rb')
# ---------------Settings--------------------
st.set_page_config(layout="wide")
st.title('BrainPulse Playground')
sidebar = st.sidebar
selected_subject = sidebar.slider('Select Subject', 0, 100, 25)
electrode_name = sidebar.selectbox(
'Select Electrode',
('FC5', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Fp1', 'Fpz', 'Fp2', 'AF7', 'AF3', 'AFz', 'AF4', 'AF8', 'F7', 'F5', 'F3', 'F1', 'Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FT8', 'T7', 'T8', 'T9', 'T10', 'TP7', 'TP8', 'P7', 'P5', 'P3', 'P1', 'Pz', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO3', 'POz', 'PO4', 'PO8', 'O1', 'Oz', 'O2', 'Iz'))
t_start, t_end = sidebar.slider(
'Select a time range in seconds',
0, 60, (0, 30), step=1)
f1, f2 = sidebar.slider(
'Select a FIR filter range',
0, 60, (2, 50), step=1)
fir_filter = [f1, f2]
cut_freq = f2
win_len = sidebar.slider('FFT window size', 0, 512, 170, step=1)
n_fft = sidebar.slider('numer of FFT bins', 0, 1024, 512, step=1)
min_vert_line_len = sidebar.slider('Minimum vertical line length', 0, 250, 2, step=1)
min_diagonal_line_len = sidebar.slider('Minimum diagonal line length', 0, 250, 2, step=1)
min_white_vert_line_len = sidebar.slider('Minimum white vertical line length', 0, 250, 2, step=1)
percentile = sidebar.slider('Precentile', 0, 100, 24, step=1)
sidebar.download_button('Download file', download(),file_name='archive.zip')
# ---------------Plot RPs--------------------
# runs_ = ['Baseline open eyes', 'Baseline closed eyes', 'Motor execution: left vs right hand', 'Motor imagery: left vs right hand',
# 'Motor execution: hands vs feet', 'Motor imagery: hands vs feet']
#
# options = st.multiselect('Select two runs to compare', runs_, ['Baseline open eyes', 'Baseline closed eyes'])
# run_list = []
#
# for v in options:
# run_list.append(runs_.index(v)+1)
# if len(run_list) <= 1:
# run_list = [1,2]
st.markdown('Baseline open eyes vs Baseline closed eyes')
options = ['Baseline open eyes', 'Baseline closed eyes']
run_list = [1,2]
rp_plot, matrix_open_binary, matrix_close_binary, epochs, stft1, stft2 = run_computation(t_start, t_end, selected_subject, fir_filter, electrode_name, cut_freq, win_len, n_fft, percentile, run_list,options)
st.write(rp_plot)
# ---------------Plot Spectrum--------------------
st.write(waterfall_spectrum(stft1, stft2, 160, cut_freq, options))
# ---------------Save RPs--------------------
if st.button('Save RPs as *.npy'):
save(matrix_open_binary, matrix_close_binary)
# ---------------Plot Radar--------------------
rqa_radar = plot_rqa(matrix_open_binary, matrix_close_binary, min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len, options)
st.write(rqa_radar)
|