File size: 1,468 Bytes
788a6f6
 
 
 
 
 
b30d7de
 
788a6f6
7042d52
788a6f6
 
 
b30d7de
788a6f6
 
 
 
 
b30d7de
 
 
 
788a6f6
 
 
 
7042d52
b30d7de
788a6f6
 
 
7042d52
 
 
 
 
 
 
 
 
 
 
788a6f6
 
7042d52
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Code here was custom written, but based on ChatGPT-4.
Example prompt: write a python function that uses an api that given an image returns a text summary of it
"""


import json
import os
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional

from dotenv import load_dotenv
from google.cloud import vision
from google.oauth2 import service_account

from code_tasks.image_dimensions import get_image_dimensions

load_dotenv()

VISION_CREDENTIALS = service_account.Credentials.from_service_account_info(
    json.loads(os.environ["GOOGLE_APPLICATION_KEY"])
)


def analyze_images(images) -> List[Dict]:
    max = 20

    def get_image_info(image_url: str) -> Optional[Dict]:
        client = vision.ImageAnnotatorClient(credentials=VISION_CREDENTIALS)
        image = vision.Image()
        image.source.image_uri = image_url  # type: ignore

        try:
            response = client.label_detection(image=image)  # type: ignore
            labels = [label.description for label in response.label_annotations]
            dimensions = get_image_dimensions(image_url)
            return {
                "url": image_url,
                "labels": ", ".join(labels),
                "dimensions": f"{dimensions[0]}x{dimensions[1]}",
            }
        except:
            return None

    with ThreadPoolExecutor() as executor:
        images = executor.map(get_image_info, images[:max])

    return [i for i in images if i]